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	and



This leads to minor improvements in (4)–(6) in the coefficient of the term arising from the case .
For  and the small set of Kasami sequences of length  we have approximately equal maximum even correlation. The Kasami set has considerably fewer sequences, however, the best known upper bound  (see [7]) for their maximum aperiodic correlation  has  as the coefficient of  where we have .


References
[1] A.Barg, “On small families of sequences with low periodic correlation," in Lecture Notes in Computer Science, vol. 781. Berlin, Germany: Springer-Veilag, 1994, pp. 154-158.
[2] S. Boztas, R. Hammons, and P. V. Kumar, "4-phase sequences with near optimum correlation properties," IEEE Trans. Inform. Theory, vol. 38, pp. 1101-1113, May 1992.
[3] T. Helleseth and P. V. Kumar, "Sequences with low correlation,” in Handbook of Coding Theory, R. Brualdi, C. Huffman, and V. Pless, Eds., preprint.
[4] T. Helleseth, P. V. Kumar, O. Moreno, and A. G. Shanbhag, “Improved estimates for the minimum distance of weighted degree trace codes,” in Proc. 1995 IEEE Int. Symp. on Information Theory (Whistler, B.C., Canada, Sept. 17-22, 1995).
[5] S. M. Krone and D. V. Sarwate, "Quadriphase sequences for spread- spectrum multiple-access communication,” IEEE Trans. Inform. Theory. vol. 30, pp. 520-529, May 1984.
[6] P. V. Kumar, T. Helleseth, and A. R. Calderbank, “An upper bound for Weil exponential sums over Galois rings and applications," IEEE Trans. Inform. Theory, vol. 41, pp. 456—468, Mar. 1995.
[7] J. Lahtonen, “On the odd and the aperiodic correlation properties of the Kasami sequences,” IEEE Trans. Inform. Theory, vol. 41, pp. 1506-1508, Sept. 1995.
[8] S. Litsyn and A. Tietavainen, "Character sum constructions of constrained error-correcting codes," Appl. Algebra in Eng., C'ommun. and Comp., vol. 5, pp. 45-51, 1994.
[9] A.A. Nechaev, "Kerdock code in a cyclic form," Discr. Math. Appl.. vol. 1, pp. 365-384, 1991.
[10] D. V. Sarwate, "An upper bound on the aperiodic autocorrelation function for a maximal-length sequence," IEEE Trans. Inform. Theory. vol. IT-30, pp. 685-687, July 1984.
[11] A.G. Shanbhag, P. V. Kumar, and T. Helleseth, “An upper bound for the aperiodic correlation of weighted-degree CDMA sequences,” in Proc. 1995 IEEE Int. Symp. on Information Theory (Whistler, B.C., Canada, Sept. 17-22, 1995).
[12] , "Improved binary codes and sequence families from -linear codes," IEEE Trans. Inform. Theory, vol. 42, pp. 1582-1587. Sept. 1996.
[13] H. Tarnanen, "An elementary proof to the weight distribution formula of the first order shortened Reed-Muller coset code,” preprint.
[14] P. Udaya and M. U. Siddiqi, "Optimal biphase sequences with large linear complexity derived from sequences over ," IEEE Trans. Inform. Theory, vol. 42, pp. 206-217, Jan. 1996.
[15] I.M. Vinogradov, Elements of Number Theory. New York: Dover, 1954.


	
New Construction for Families of Binary Sequences with Optimal Correlation Properties

Jong-Seon No, Kyeongcheol Yang, Member, IEEE, 
Habong Chung, Member, IEEE, and 
Hong-Yeop Song, Member, IEEE


Abstract—In this correspondence, we present a construction, in a closed form, for an optimal family of  binary sequences of period  with respect to Welch’s bound, whenever there exists a balanced binary sequence of period  with ideal autocorrelation property using the trace function. This construction enables us to reinterpret a small set of Kasami and No sequences as a family constructed from  -sequences. New optimal families of binary sequences are constructed from the Legendre sequences of Mersenne prime period, Hall’s sextic residue sequences, and miscellaneous sequences of unknown type. In addition, we enumerate the number of distinct families of binary sequences, which are constructed from a given binary sequence by this method.
Index Terms—Kasami sequences, Legendre sequences, No sequences, optimal correlation property, signature sequences.


I. INTRODUCTION
Code-division multiple access (CDMA) systems use pseudonoise binary sequences as signature sequences, and several spread-spectrum communication systems also use them as spreading codes for low probability of intercept [18], [20]. Desirable characteristics of a family of binary sequences for such applications include long-period, low out-of-phase autocorrelation values, low crosscorrelation values, low nontrivial partial-period correlation values, large linear span, balance of symbols, large family size, and ease of implementation.
A binary (0 or 1) sequence  of period  is called balanced if the number of 1’s is one more than the number of 0’s [8]. It is said to have the ideal autocorrelation property if its periodic autocorrelation function  is given by



where  is defined as



and  computed modulo . Note that  is the number of agreements minus the number of disagreements between  and  as  runs from 0 to  [7], [8], [21]. It is well known that the ideal autocorrelation property implies the balance property.
Let  and  be two binary sequences of period . Two sequences  and  are said to be cyclically equivalent
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	if there exists an integer  such that  for all . Otherwise, they are said to be cyclically distinct. For an integer r, the sequence  is called the decimation by  of the sequence  if  for any integer . It is easily checked that the period of  is given by  divided by . It is also well known that if a sequence  of period  has the ideal autocorrelation property, so does its decimation  by , where  is an integer relatively prime to . Two sequences  and  are said to be equivalent if there are some integers  and  such that   for all . They are said to be inequivalent, otherwise. 
Consider a set of  binary sequences, each with period , denoted by



The periodic crosscorrelation  at shift  between two sequences  and  from this collection is defined as



The maximum out-of-phase periodic autocorrelation magnitude  for this signal set is defined as



and the maximum crosscorrelation magnitude  between sequences in this set is given by



The criterion for signal design is to minimize



In signal design, the Welch bound and the Sidelnikov bound are used to test the optimality of sequence sets. Some of well-known optimal families of binary sequences include Gold sequences [6], Kasami sequences [18], [20], bent sequences [12], [20], and No sequences [15]. Gold sequences form an optimal set with respect to Sidelnikov’s bound [19] which states that for any set of  or more binary sequences of period 



The small set of Kasami sequences is an optimal collection of binary sequences with respect to Welch’s bound [22], which implies that



when it is applied to a set of  sequences of period  for an even integer . Bent and No sequences also form an optimal set with respect to Welch’s bound, respectively, but they have larger linear spans than Gold sequences and Kasami sequences.
In this correspondence, we show that if a binary sequence of period   in a trace expression has the ideal autocorrelation property, it can be used to construct, in a closed form, a family of  binary sequences of period  with optimal correlation with respect to Welch’s bound. This construction method enables us to reinterpret the small set of Kasami sequences as well as the No sequences as a family constructed from the  -sequences. New optimal families of binary sequences are constructed from the Legendre sequences of Mersenne prime period, Hall’s sextic residue sequences, and miscellaneous sequences of unknown type. In addition, we enumerate the number of distinct families of binary sequences, which are constructed from a given binary sequence by this method.
This correspondence is organized as follows. In Section II, we present the main results to construct an optimal family of binary
	sequences with respect to Welch’s bound. In Section III, the small set of Kasami sequences and the No sequences are reinterpreted as a family constructed from the -sequences. New optimal families of binary sequences are constructed from the Legendre sequences of Mersenne prime period in Section IV. Hall’s sextic residue sequences and miscellaneous sequences of unknown type are also considered in Section IV.


II. CONSTRUCTION OF A FAMILY OF BINARY SEQUENCES WITH OPTIMAL CORRELATION

Let  be a prime power and  be the finite field with  elements. Let  for some positive integers  and . Then the trace function  from  to the subfield  is a mapping [10], [11] given by



No et al. [17] presented a closed-form expression of binary sequences of longer period with ideal autocorrelation property in a trace representation, if a given binary sequence with ideal autocorrelation property is described using the trace function. The idea of extension in [17] will be helpful for our further discussion, so it is quoted without proof in the following theorem.
Theorem 1 [17]: Let  and  be positive integers such that . Let  be a primitive element of  and set  where . Assume that for an index set , the sequence  of period  given by



has the ideal autocorrelation property. For any integer , relatively prime to , the sequence



of period  defined by



also has the ideal autocorrelation property.
Based on the idea of extension in Theorem 1, we will provide a method to construct an optimal family of  binary sequences of period  from a given binary sequence of period  with ideal autocorrelation property. Throughout the correspondence, we use the following notations. Let  and  be positive integers such that . Let  be a primitive element of  and set . Note that  is primitive in . From now on, we assume that the sequence  of period  given by



has the ideal autocorrelation property for an index set .
Theorem 2: Let , and let  be the sequence given by


where , is an integer relatively prime to , and the index set  is in (1). Define the family  of  binary sequences of period  as
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	Then the family  is an optimal set of  binary sequences of period  with respect to Welch’s bound. Furthemore,  takes only a value , or  for any  and  except for the case where  and  (mod N).
Proof: We will show that the possible values of  are , or  for any , and  except for the case where  and  (mod N). Let . Since  any integer , can be uniquely written as



Then each sequence  becomes



since  and . For short notation, we define


Then we have



Similarly, we have



where , is also uniquely written as



Thus we get the equation at the bottom of this page. Note that the inner sum



yields  when



When



we claim that the inner sum is . If either  or , the exponent to  in the inner sum is essentially a shift of the sequences . Since , it is obvious that the sequence  is balanced and has the ideal autocorrelation property. This implies that the inner sum gives . On the other hand, if  and , the inner sum is the autocorrelation of the sequence  at a nonzero shift (mod N), so it is  by the assumption. Thus the inner sum always yields  if




	Therefore, it is sufficient to find the size of the set of ’s such that the inner sum gives the value  in order to compute . Let



Then we have



By defining  and , we have



Note that and , so we get



Similarly, we have . Thus



The degree of the polynomial in  is at most 2, which means . Hence we conclude that


from (2).
Theorem 3: Let , and let  be a primitive element of . Set  and . Let  be the sequence given by



for  and the index set  in (1), where , is an integer relatively prime to , and , is an integer relatively prime to . Define the family  of  binary sequences of period  as



Then the family  is an optimal set of  binary sequences of period  with respect to Welch’s bound, and  takes only a value , , or  for any , and  except for the case where  and  (mod K).
Proof: By Theorem 1, the sequence  in (1) can be extended to a sequence  of period  with ideal autocorrelation property given by



Let . Since , any integer , , can be uniquely written as
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	Then each sequence  becomes


since  and . For short notation, we define


Then we have


Note that



Since  is the decimation by  of , it also has the ideal autocorrelation property. Hence, similar arguments as in the proof of the Theorem 2 complete the proof.
Remark 4: The family  of sequences  in Theorem 3 can be obtained by applying Theorem 1 to  in (1) and then Theorem 2. As a first step,  can be extended to a sequence  of period  with ideal autocorrelation property, defined by


where , is an integer relatively prime to M. Writing each trace term in  as


for some index set , the sequence  can be expressed as


Applying Theorem 2 to  we have a family


given by



for an integer , relatively prime to  On the other hand,  in Theorem 3 can be expressed as


using the relation in (3). Hence,  is exactly the same as .

A general form for  in Theorem 3 can be given as follows:


Here, , and , is a relatively prime to  for each 

	In signal design for CDMA, it is desirable to have a lot of distinct families of binary sequences with optimal correlation for a given period. Hence it is an interesting problem to ﬁnd the number of distinct families of binary sequences constructed from a given binary sequence by Theorem 2.
Two families  and  of sequences of the same period are said to be equivalent if each sequence in  is a cyclic shift of some sequence in , and vice versa. Otherwise, they are said to be distinct. Furthermore, they are said to be fully distinct if each sequence in  is cyclically distinct from every sequence in .
For an integer , define the cyclotomic eoset  of an integer , by

For the sake of convenience, the cyclotomic eoset representative of  is often defined as the least integer in  It is easily checked that either  or . I fence the set  is partitioned into pairwise disjoint cyclotomic eosets, that is,

 

where A is the set of all the cyclotomic coset representatives. Note that


 for any integer .

For an integer  and an index set , define  as



and define the set  of cyclotomic cosets associated with I as



Let  be the number of r’s relatively prime to M such that , i.e.



Theorem 5: Let  be the number of fully distinct families  of  binary sequences of period   given in Theorem 2. Then we have



where  is the Euler’s phi function and  is given in (4).
Proof: In order to evaluate , we need to count the number of choices for   and . The number of choices for  is , since  and   give the same family for any  in the cyclotomic coset mod  containing . If   , then the family associated with  is exactly the same as the family associated with . Thus the number of choices for  is , given by (4). Therefore, .


III. KASAMI SEQUENCES AND NO SEQUENCES
Let m and n be positive integers such that . Let  be a primitive element of  and set  where . Then  is a primitive element of . Let  be a binary m-sequence of period , given by



Note that the m-sequence  is a binary sequence with ideal autocorrelation property. Applying Theorem 2 to , we get an optimal family  defined by
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	where  is the sequence of period N given by



for . Observe that the family  in (5) is exactly the family of No sequences [15], In particular, the family  becomes the small set of Kasami sequences when  [14], [20], Hence the small set of Kasami sequences and the No sequences can be reinterpreted as a family constructed from the m-sequences. Similarly, generalized No sequences in [13] and [14] are shown to be families constructed from an m-sequence by applying Theorem I successively and then Theorem 2.
Consider the number  of fully distinct families  of  binary sequences of period  constructed from an m-sequence by Theorem 2. Since I = {1}, it is easy to check that . Hence we have


which is a known result [15],
IV. New Optimal Families of Binary Sequences
A. New Optimal Families from Legendre Sequences

Let p be an odd prime. The Legendre sequence  of period p is defined.
It is not difficult to show that  has the ideal autocorrelation property if and only if p=3(mod 4) [3], [8], Recently, a trace representation of the Legendre sequences of period  (called Mersenne prime) was derived as follows [16]:
Proposition 6 [16]: Let  be a prime for some integer  and let u be a primitive element of , the set of integers mod M. Then there exists a primitive element a of  such that


and the sequence  of period M given by



is exactly the Legendre sequence given in (6).
Consider a decimation  by  of the sequence   given in (7). Clearly, if  is an even integer, then  is the Legendre sequence given in (6). It is also easy to show that if  is an odd integer, then , then  is the sequence given by



Since  has the ideal autocorrelation property regardless of , we will also refer to it as a Legendre sequence hereafter. The following theorem is the consequence of Theorem 2 and Proposition 6.

	Theorem 7: Let m be an integer such that  is a prime, and let . Let u be a primitive element of , the set of integers mod M. Let a be a primitive element of  and set  where . For an integer , let  be the sequence of period  given by



Then the family  defined by is an optimal set of  binary sequences of period  with respect to Welch’s bound.
Consider the number of fully distinct families  of  binary sequences of period  constructed from the Legendre sequence of period  by Theorem 7. Since we have


for a primitive element u in , it is easy to check that . Hence we get



Remark 8: By Theorem 3 and Remark 4, the Legendre sequences of Mersenne prime period  can be used to construct optimal families of period , where  is any even multiple of m. □ 
Example 9: Let m = 7 and thus M = 127(= 27—1). It is easy to check that u = 3 is a primitive element of Z127. Let  be a primitive element of . The sequence  given by

is the Legendre sequence of period 127
Let . Let  be a primitive element of  such that
. For , we define



where , is an integer. Then the family  defined by

is an optimal set of I 28 binary sequences of period 16383 with respect to Welch’s bound. Note that there are 1512 fully distinct families of binary sequences of period 16383, constructed from the Legendre sequences of period 127.
B. New Families from Hall’s Sextic Residue Sequences
Binary sequences of period  with ideal autocorrelation property associated with Hall’s difference set appears only when  is 5, 7, and 17 [1], [9], They are known as the Hall’s sextic residue sequences. In the case that , the Hall’s sextic residue sequences are exactly the m-sequences of period 31.
Let  be one of 5, 7, or 17, and set . Let  be a primitive element in , and let  be a primitive element. From a computer search for a trace representation of the I lull’s sextic residue sequence  of period M, it is found that it can be expressed as
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	Note that its decimation by any integer  also has the ideal autocorrelation property. Hence,  and all of its decimations are called the Hall’s sextie residue sequences. Applying Theorem 2 to , we have an optimal family with respect to Welch’s bound in the following.
Theorem 10: Let , where  is one of 5, 7, or 17, and let  be a primitive element in  with  Let  be a primitive element of  and set  where . For an) integer  let  be the sequence of period  given by



Then the family  defined by



is an optimal set of  binary sequences of period   with respect to Welch’s bound.
Consider the number  of fully distinct families of binary sequences of period N constructed from the Hall's sextie residue sequences of period M by Theorem 10. Since



in  , it is easy to check that . Hence we have

Remark II: Using Theorem 3 or Remark 4, the Hall’s sextic residue sequences of period   can be applied to construct optimal families of period   , where - is any even multiple of m.

V. New Optimal Families from
Miscellaneous Sequences of Unknown Type

To classify and construct balanced binary sequences of period    is a very interesting problem in both theory and practice [7], [8], Especially, the balanced binary sequences of period     with ideal autocorrelation property find many applications in spread-spectrum communication systems. A complete search for those sequences was conducted for period 127 by Baumert and Fredrickson [2], 255 by Cheng [4], and 511 by Drier [5],
It is well known that there are six inequivalent binary sequences of period 127 with ideal autocorrelation property: an m-sequence, a Legendre sequence, a  Hall’s sextic residue sequence, and three others called the miscellaneous sequences of unknown type I, II, and III. Let  be a primitive element of . Then the three miscellaneous sequences are known to have the following trace representation by a computer search:

i) Unknown Type I

ii) Unknown Type II

iii) Unknown Type III


where  runs from 0 to 126.

	By Theorem 2, new optimal families can be constructed from the above sequences of unknown type. For example, consider a family from the sequence Let . Let  be a primitive element of  and set  where . For any integer , let  be the sequence of period  given by


where  and . Then the family  defined by



is an optimal set of 128 binary sequences of period  with respect to Welch’s bound. It is easily checked that  = 18. Hence we have  optimal families from a binary sequence of each miscellaneous type.
At period 255, it is found that there are four inequivalent binary sequences with ideal autocorrelation property: an m-sequence, a GMW sequence, and two others of unknown type. New optimal families can be constructed from a binary sequence of each unknown type. Note that  in this case.
At period 511, there are five inequivalent binary sequences with ideal autocorrelation property: an m-sequence, a GMW sequence, and three others of unknown type. New optimal families can be constructed from a binary sequence of each unknown type. Note that   in this ease.
In the ease of period 1023, a computer search found that there is at least one binary sequence  with ideal autocorrelation property, which is inequivalent to any of known binary sequences such as the m-sequences, the GMW sequences, and the extensions of the Legendre sequences. It is given by



where n is a primitive element of . Hence, a new optimal family of 1024 binary sequences of period  can be constructed from the sequence  described above.
As in the cases of Legendre sequences and Hall’s sextic residue sequences, miscellaneous sequences of unknown type of period  can be used to construct optimal families of period , where  is any even multiple of m, by applying Theorem 3 or Remark 4.
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Is Code Equivalence Easy to Decide?
Erez Petrank and Ron M. Roth, Member, IEEE
Abstract— We study the computational difficulty of deciding whether two matrices generate equivalent linear codes, i.e., codes that consist of the same codewords up to a fixed permutation on the codeword coordinates. We call this problem Code Equivalence. Using techniques from the area of interactive proofs, we show on the one hand, that under the assumption that the polynomial-time hierarchy does not collapse, Code Equivalence is not NP-complete. On the other hand, we present a polynomial-time reduction from the Graph Isomorphism problem to Code Equivalence. Thus if one could find an efficient (i.e., polynomial-time) algorithm for Code Equivalence, then one could settle the long-standing problem of determining whether there is an efficient algorithm for solving Graph Isomorphism.
Index Terms — Code Equivalence, Graph Isomorphism, interactive proofs, polynomial hierarchy.
I. Introduction
Let F be a finite field and let  and  be generator matrices of two linear codes  and  over F. We say that  and  are code-equivalent, denoted , if the sets  and  are the
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	same, up to a fixed permutation on the coordinates of the codewords of . In other words,  if and only if both matrices have the same order  , and there exist an  permutation matrix P and a nonsingular  matrix S over F such that . The problem of deciding whether two generator matrices are code-equivalent will be referred to as the Code Equivalence problem.
The purpose of this correspondence is to study the computational difficulty of the Code Equivalence problem. As one application of a related problem, we mention the public-key cryptosystems due to McEliece [9] and Niederreiter [11]. Recall that an alternant code over GF (q) is defined by a parity-check matrix of the form , where the ’s are distinct elements in  and the ’s are nonzero elements in  [8, ch. 12]. Goppa codes are special cases of alternant codes where certain restrictions are imposed on the values ’s, and generalized Reed-Solomon codes are special cases of alternant codes where m = 1. The mentioned cryptosystems are based on the assumption that it is difficult to identify the values  and  out of an arbitrary generator matrix (or parity-check matrix) of an alternant code. Namely, it is difficult to obtain a code- equivalent matrix of the form . On the other hand, as shown in [12], it is easy to extract the values ay and y3 from any systematic generator matrix of a generalized Reed-Solomon code; hence, cryptosystems based on such a code are breakable. This was pointed out explicitly by Sidelnikov and Shestakov in [13]. For related work, see also the references cited in [10, p. 317].
The significance of the Code Equivalence problem can also be exhibited through the results of Kasami, Lin, and Peterson [6], and Kolesnik and Mironchikov [7], who showed that Reed- Muller codes are equivalent to subcodes of extended Bose- Chaudhuri-Hocquenghem (BCH) codes. Thus it should be interesting to design an efficient algorithm that decides whether two codes are indeed equivalent, and thus infer from the properties that arise from one code representation to the other.
On the positive side, we first show that the Code Equivalence problem is unlikely to be NP-complete. The proof of this assertion relies on techniques developed in the field of interactive proofs, which we summarize in Section II. In Section III, we invoke results of Goldwasser, Micali, and Rackoff [4], Goldreich, Micali, and Wigderson [3], Goldwasser and Sipser [5], and Boppana, Hastad, and Zachos [2], to show that if Code Equivalence is NP-complete, then the polynomial hierarchy collapses.
Yet, we do state also a negative result, namely, that Code Equivalence is also unlikely to be too easy. We do this by relating Code Equivalence to the Graph Isomorphism problem. Let  and  be two undirected graphs with the same set of vertices V, and with sets of edges  and , respectively. We say that Qi is isomorphic to Q2 if there exists a permutation (isomorphism)  such that  if and only if  (we assume here that the graphs have no parallel edges; if they do, then  and  are multisets, in which case isomorphism requires equality of the multiplicities of  and  in  and E2, respectively). The problem of deciding efficiently (i.e., in polynomial time) whether two graphs are isomorphic is a notoriously open question in Computer Science. The problem has been studied extensively in recent decades, but the state of the art is that there is no known efficient algorithm for determining whether two given graphs are isomorphic.
In Section IV, we show a polynomial-time reduction from Graph Isomorphism to Code Equivalence. This implies that presenting an
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