Einstein's Theory of Relativity for	Теория относительности Эйнштейна
Dummies	для чайников
Most people think it was Einstein who, in the first decade of the twentieth century, came up with the theory of relativity – as if Albert was quietly working away in his patent office in Switzerland and, entirely on his own, managed to come up with a completely new theory of space and time. Actually, it wasn't quite like that, but because the history of science is a dreadfully tedious subject, we will skip Albert's many predecessors and get straight to the best bits of the theory of relativity.	Большинство людей считает, что именно Эйнштейн в первом десятилетии двадцатого века придумал теорию относительности. Буд-то бы Альберт, спокойно работая в патентном бюро в Швейцарии, вдруг совершенно самостоятельно смог создать абсолютно новую теорию пространства и времени. На самом деле, это не совсем так, но из- за того, что история науки невероятно скучный предмет, мы пропустим многочисленных предшественников Альберта и перейдем к самым интересным аспектам теории относительности.
Question: Why is it called a theory of RELATIVITY? Because time and length are no longer absolutes. You've got your digital watch on your wrist and a metre ruler on your desk. These seem like absolutes: a second and a centrimetre for you must be the same as they are for me, and the same as they are on Alpha Centauri. But they're not. If I stay on my balcony while you start a career as an astronaut flying round the galaxy at an incredible speed (and it would have to be pretty close to the speed of light: 300,000km/sec), and if you could later whiz past my balcony so that we could somehow compare watches and rulers, your metre ruler would be smaller and your watch would be going slower than mine. (Actually that wouldn't be possible because the human eye can't spot things moving at that kind of speed, and spaceship rockets do nasty things to balconies that	Вопрос: Почему эта теория называется теорией ОТНОСИТЕЛЬНОСТИ? Потому что время и длина больше не являются абсолютными величинам. Посмотри на свои цифровые часы и линейку на столе. Кажется, что время и длина абсолютны: секунда и сантиметр, как для меня, так и для тебя, должны быть одинаковыми, и оставаться такими же и на Альфа Центавра. Но это не так. Представь, что я стою на балконе, а ты, решив сделать карьеру космонавта, летаешь по галактике на невероятной скорости (которая равнялась бы примерно скорости света – 300, 000 км в секунду). Так вот, если бы ты пронесся со свистом мимо моего балкона, и мы смогли бы каким-то образом сравнить наши часы и линейку, то твоя линейка была бы меньше, чем моя, а твои часы шли бы медленней, чем мои. (На самом деле, провести такой эксперимент

are only a few metres away. But if it	было бы невозможно, так как глаз не
were practically possible, it would be	может различить предметы,
fun.)	движущиеся на такой скорости. Да и
	космические ракеты не особо
	церемонятся с балконами,
	находящимися в нескольких метрах
	от них. Но если бы практически это
	было возможно, мы бы
	повеселились).
While you're out in space travelling at	Когда ты на неимоверной скорости
some unbelievable speed nothing seems	летишь в космосе, тебе кажется, что
to you to have changed. It's only if you	ничего не меняется. Вот только если
have a chance to compare measurements	бы у тебя была возможность сравнить
of time and length with those back home	измерения времени и длинны с теми,
that you see that something odd has	что ты делал дома, ты бы понял, что
happened.	случилось что-то странное.
	В: Во всех предисловиях к теории
Q: All the introductions to Einstein talk	Эйнштейна рассказывается про
about the twin paradox. What's that?	парадокс Близнецов. Что это такое?
One 25 year old twin stays on earth	Представь, что одна девушка, которой
while the other, fresh out of astronaut	25 лет, остается на Земле, в то время
school, sets off on a space voyage	как ее сестра-близнец, выпускница
travelling at 90% of the speed of light.	школы космонавтики, отправляется в
After 10 years in space, with her	космическое путешествие, двигаясь
mission accomplished, she turns round	со скоростью составляющей 90% от
and heads back to earth. By the time she	скорости света. Проведя 10 лет в
lands she knows from her on-board	космосе и завершив свою миссию,
clock that 20 years have passed. She is	она возвращается на Землю. К
now 45 years old. Fortunately, her study	моменту приземления она знает, что
of relativity has prepared her for the	согласно бортовым часам прошло 20
shock when she sees her twin sister,	лет. Теперь ей 45. К счастью, то, что
who is now 71 years old.	она изучала теорию относительности,
who is now 71 years old.	подготовило ее к шоку от встречи со
	своей сестрой-близнецом, которой
	сейчас 71.
Conclusion: Space travel, when it is	Вывод: Сверхскоростные
-	
really, really fast, is also time travel:	космические путешествия можно
you travel into the future without getting	также назвать путешествиями во
that much older yourself.	времени: ты перемещаешься в
So is everything relative?	будущее, не старея. Так неужели все
Not exactly. Actually, the idea of time	относительно?
and length being relative to our speed	Не совсем. На самом деле, идея, что
was proposed first as a way of	время и длина относительны
explaining an observation that puzzled	скорости, впервые была предложена

everyone. Some people in the nineteenth century devised a very sensitive piece of apparatus to measure the speed of light as we on earth rotate in space. The idea behind the experiment is easier to grasp if we think of spacecraft and the tiny particles of light called photons. If you were accelerating away from the sun wearing special goggles that enabled you to see individual photons, as you approached 300,000km/sec you would expect to see photons moving ever more slowly past the side window of the spacecraft. And common sense would say if you put your foot on the gas a bit more, you should overtake the photons and leave them crawling along behind as your spacecraft exceeds the speed of light.	как путь к объяснению того, что озадачило всех. В 19 веке был изобретен очень чувствительный механизм для измерения скорости света во время того, как мы на Земле вращаемся в космосе. Идею, стоящую за экспериментом, будет легче понять, если мы представим космический корабль и крошечные частицы света, называемые фотонами. Если бы ты с большой скоростью удалялся от Солнца, надев очки, которые бы позволяли разглядеть фотоны по отдельности, то, когда бы ты достиг скорости 300, 000 км\сек, ты бы увидел, что фотоны медленней перемещаются за боковым окном космического корабля. Здравый смысл сказал бы, что если бы ты поднажал немного педаль газа, ты бы обогнал фотоны, и они бы остались позади, в то время как твой корабль превысил бы скорость света.
What the scientists discovered, to everyone's surprise, was that if you move faster, light doesn't whiz past your window more slowly. It always whizzes past at the same speed. (In other words, the photons always win – nothing travels faster than light.) []. <u>http://fullspate.digitalcounterrevolution.</u> <u>co.uk/english-articles- advanced/relativity.html</u>	К всеобщему удивлению, ученые выяснили, что если ты начинаешь двигаться быстрее, свет за окном не замедляет свой ход. Он всегда проносится мимо с одинаковой скоростью. (Другими словами, фотоны всегда побеждают, ничего не перемещается быстрее, чем свет). [].