0:00:00.809,0:00:03.110
Hello everyone,

0:00:03.110,0:00:05.170
and welcome
to my channel

0:00:05.170,0:00:06.209
dflessons,

0:00:06.209,0:00:07.689
dedicated to

0:00:07.689,0:00:09.949
C# programming.

0:00:09.949,0:00:12.129
As you know,
our last lesson

0:00:12.129,0:00:15.089
was dedicated to all
members of a type, except

0:00:15.089,0:00:15.909
Events.

0:00:15.909,0:00:17.809
That's why
our new lesson

0:00:17.809,0:00:20.019
is dedicated to
them.

0:00:20.019,0:00:22.160
But first of all,
we need to say that

0:00:22.160,0:00:23.910
events are built

0:00:23.910,0:00:26.300
on the C# mechanism,
called

0:00:26.300,0:00:27.589
delegates.

0:00:27.589,0:00:29.969
That's why we are
going to learn

0:00:29.969,0:00:32.210
what delegates are and
how to work with them.
													
0:00:32.210,0:00:34.140
Then we are going to learn
how to create events
													
0:00:34.140,0:00:36.590
based on delegates.

0:00:36.590,0:00:38.890
In the beginning, let's
talk about such word

0:00:38.890,0:00:41.170
as a signature
of a method.

0:00:41.170,0:00:42.580
Let's learn a definition.

0:00:42.580,0:00:45.080
A signature of a method
is a type and

0:00:45.080,0:00:45.750
an order

0:00:45.750,0:00:48.450
of its input and
output parameters.

0:00:48.450,0:00:50.589
Please, take a look
at all methods

0:00:50.589,0:00:52.800
that the Student class
consists of.

0:00:52.800,0:00:54.490
Don't pay any attention
to the realization

0:00:54.490,0:00:56.370
of these methods, as
it doesn't matter

0:00:56.370,0:00:57.110
for now.

0:00:57.110,0:00:59.310
All we need is to
declare a method.

0:00:59.310,0:01:00.740
In the following methods

0:01:00.740,0:01:03.980
Move and Grow have
the same methods,

0:01:03.980,0:01:05.160
because they have

0:01:05.160,0:01:08.040
the same return type - string

0:01:08.040,0:01:10.320
and the same
input type - int.

0:01:10.320,0:01:12.659
Methods SetInfo
and SetSchool,

0:01:12.659,0:01:13.869
on the contrary,

0:01:13.869,0:01:15.560
have different
signatures,

0:01:15.560,0:01:17.750
because even though
they have the same output

0:01:17.750,0:01:19.050
parameter - void,

0:01:19.050,0:01:21.220
and the same input types,

0:01:21.220,0:01:22.800
the order of
input parameters

0:01:22.800,0:01:24.020
is different.

0:01:24.020,0:01:26.310
SetInfo has - string first
then goes - int.

0:01:26.310,0:01:27.930
SetSchool has the opposite.

0:01:27.930,0:01:30.010
That's why we can say
that only 2 methods

0:01:30.010,0:01:32.540
in the Student class
have the same signature:

0:01:32.540,0:01:34.730
Move and Grow.

0:01:34.730,0:01:36.760
In other words,
a signature

0:01:36.760,0:01:38.670
of a method can be
seen as some layout,

0:01:38.670,0:01:40.460
that enumerates	types
of all parameters.

0:01:40.460,0:01:42.460
You can see
some examples of

0:01:42.460,0:01:44.840
the signatures
on the screen.

0:01:44.840,0:01:47.210
As I've already said before,
neither method name

0:01:47.210,0:01:49.439
nor parameter name
matters

0:01:49.439,0:01:50.260
in the signatures.

0:01:50.260,0:01:52.210
Only a type
and an order

0:01:52.210,0:01:55.970
of parameters
are important.

0:01:55.970,0:01:58.030
Now let's find out

0:01:58.030,0:01:59.520
what delegate is.

0:01:59.520,0:02:02.140
First of all, a delegate, like
everything else in C# language,

0:02:02.140,0:02:03.890
is a data type.

0:02:03.890,0:02:06.280
Secondly, a delegate has
a reference type of the data

0:02:06.280,0:02:07.949
i.e. a class.

0:02:07.949,0:02:09.949
Soon, I will
show you this
			
0:02:09.949,0:02:11.389
using MSIL.

0:02:11.389,0:02:13.260
And, finally, a delegate

0:02:13.260,0:02:15.139
is a data type,

0:02:15.139,0:02:18.609
that can store a
link to a method,

0:02:18.609,0:02:20.739
that has the same
signature

0:02:20.739,0:02:22.509
as the signature
declared in a

0:02:22.509,0:02:23.729
delegate.

0:02:23.729,0:02:25.059
Please, note that

0:02:25.059,0:02:26.820
in our delegate named

0:02:26.820,0:02:28.550
CountDelegate
has been declared

0:02:28.550,0:02:31.310
a signature of the
following method:

0:02:31.310,0:02:34.039
return type - int,

0:02:34.039,0:02:36.759
parameter type (single parameter) - string,

0:02:36.759,0:02:39.379
Both method name
and parameter name

0:02:39.379,0:02:42.909
are not important.

0:02:42.909,0:02:45.419
2 methods in
the StringHelper class

0:02:45.419,0:02:47.749
corresponds to this signature:

0:02:47.749,0:02:48.810
GetCount

0:02:48.810,0:02:51.059
and GetCountSymbolA.

0:02:51.059,0:02:52.959
The GetCountSymbol method

0:02:52.959,0:02:55.579
doesn't fit to this
signature, as

0:02:55.579,0:02:57.109
its input parameters
uses

0:02:57.109,0:03:00.249
two parameters:
- string and - char.

0:03:00.249,0:03:02.619
Let's make sure that
a delegate is

0:03:02.619,0:03:04.939
just a simple

0:03:04.939,0:03:05.979
reference type.

0:03:05.979,0:03:08.289
Let's run disassembler

0:03:08.289,0:03:10.059
and open

0:03:10.059,0:03:12.139
our assembly.

0:03:12.139,0:03:15.079
Now choose CountDelegate.

0:03:15.079,0:03:16.869
You can see that

0:03:16.869,0:03:18.829
the keyword "class"
figures in the declaration

0:03:18.829,0:03:21.350
of this type.

0:03:21.350,0:03:23.770
This means, that
our CountDelegate data type

0:03:23.770,0:03:28.009
appears to be a class.

0:03:28.009,0:03:30.610
And due to CountDelegate
being a class,

0:03:30.610,0:03:32.930
we can declare
any variable

0:03:32.930,0:03:34.299
of this type.

0:03:34.299,0:03:35.530
You can see

0:03:35.530,0:03:37.630
how we declare delegates
d1 and d2

0:03:37.630,0:03:40.430
of the CountDelegate type

0:03:40.430,0:03:42.159
in the following example
on the screen.

0:03:42.159,0:03:43.850
And the values of these

0:03:43.850,0:03:44.669
variables are

0:03:44.669,0:03:46.620
the links on the
methods

0:03:46.620,0:03:47.830
which are corresponding to

0:03:47.830,0:03:50.779
the signature, that has
been declared on a delegate.

0:03:50.779,0:03:52.290
As you can see,

0:03:52.290,0:03:54.939
methods GetCount and GetCountSymbolA

0:03:54.939,0:03:56.520
have the same signatures,

0:03:56.520,0:03:58.440
that's why we can
assign a link

0:03:58.440,0:04:00.049
to the variables.

0:04:00.049,0:04:02.949
But the method GetCountSymbol

0:04:02.949,0:04:05.329
has a different signature
and that's why compiler

0:04:05.329,0:04:08.649
shows error.

0:04:08.649,0:04:11.139
Now let's learn
how to use our

0:04:11.139,0:04:14.019
variables. First,
let's declare

0:04:14.019,0:04:15.109
the TestDelegate method

0:04:15.109,0:04:16.680
with its first parameter

0:04:16.680,0:04:18.319
getting a link

0:04:18.319,0:04:19.620
to a method under test,

0:04:19.620,0:04:22.650
and the second parameter is linked
with the string under test.

0:04:22.650,0:04:24.900
After that. let's declare
a string under test: 						После чего объявим тестируемую строку:

0:04:24.900,0:04:26.189
= lamp.

0:04:26.189,0:04:28.930
Then let's set up
2 calls

0:04:28.930,0:04:31.820
In the first call, we invoke

0:04:31.820,0:04:32.530
the TestDelegate method

0:04:32.530,0:04:34.610
and send the reference to it

0:04:34.610,0:04:36.169
on the GetCount method

0:04:36.169,0:04:37.430
In the second invoke,

0:04:37.430,0:04:39.389
we invoke TestDelegate, sending

0:04:39.389,0:04:42.309
a reference to it on the GetSymbolA method.

0:04:42.309,0:04:44.559
What happens in our

0:04:44.559,0:04:46.340
TestDelegate method?

0:04:46.340,0:04:48.030
Compiler

0:04:48.030,0:04:50.249
gets a reference to a
method through

0:04:50.249,0:04:53.110
the Method variable

0:04:53.110,0:04:55.840
and invokes it by
the signature.

0:04:55.840,0:04:57.729
Which means, that there is

0:04:57.729,0:04:59.650
just one input parameter
a type - string

0:04:59.650,0:05:02.169
and the return type value is - int.

0:05:02.169,0:05:04.219
Let's run our
example and see

0:05:04.219,0:05:06.949
what's gonna happen.

0:05:06.949,0:05:09.419
We'll see exactly what
we expect.

0:05:09.419,0:05:11.460
The total number of the
characters: 4, number

0:05:11.460,0:05:14.469
of the characters "a": 1.

0:05:14.469,0:05:16.389
Students usually

0:05:16.389,0:05:18.310
have a question
by now:

0:05:18.310,0:05:20.630
why do we need
these delegates?

0:05:20.630,0:05:23.250
How and where can we use
we use them

0:05:23.250,0:05:24.490
Here's a simple example.

0:05:24.490,0:05:27.620
Let's declare the Move method
in the Student class.

0:05:27.620,0:05:29.729
This method is
going to "translocate"

0:05:29.729,0:05:30.830
our student.

0:05:30.830,0:05:32.319
And its input value
is the amount of

0:05:32.319,0:05:33.169
kilometres.

0:05:33.169,0:05:35.059
Let's organize a cycle
inside a class

0:05:35.059,0:05:36.929
showing a message
about traversed

0:05:36.929,0:05:38.349
kilometres

0:05:38.349,0:05:39.839
within this cycle.

0:05:39.839,0:05:41.789
That's how in looks

0:05:41.789,0:05:46.270
in action.

0:05:46.270,0:05:47.240
You'd say:

0:05:47.240,0:05:49.479
that's OK, everything
works just fine.

0:05:49.479,0:05:50.639
But let's think.

0:05:50.639,0:05:51.639
Let's assume, that

0:05:51.639,0:05:53.919
our Student class is
located on some

0:05:53.919,0:05:56.129
server. In this case,

0:05:56.129,0:05:57.590
we'd like to
have an ability to					возможность

0:05:57.590,0:05:59.469
access this class
and get this

0:05:59.469,0:06:00.840
message by the internet

0:06:00.840,0:06:03.150
instead of console.

0:06:03.150,0:06:05.240
Or let's imagine, we are building
a non-console application -

0:06:05.240,0:06:07.280
a Windows application

0:06:07.280,0:06:09.710
with a graphic interface.
In this case, we'd like to

0:06:09.710,0:06:10.689
see this message

0:06:10.689,0:06:12.529
in some pretty

0:06:12.529,0:06:14.080
graphic window.

0:06:14.080,0:06:16.830
The whole point is that:
we need to organize

0:06:16.830,0:06:19.389
the Move method
in order to

0:06:19.389,0:06:21.639
get messages
from it independently

0:06:21.639,0:06:24.169
from the way of
representing

0:06:24.169,0:06:26.110
this message in
the interface.

0:06:26.110,0:06:28.180
Let's try this
on practise, using

0:06:28.180,0:06:31.080
the delegates.

0:06:31.080,0:06:33.300
First of all, let's
declare a delegate.

0:06:33.300,0:06:34.930
We'll need a method, 				Нам требуется метод,

0:06:34.930,0:06:36.360
that will receive one 					который будет
string parameter - 						принимать один

0:06:36.360,0:06:39.199
our message,
and the algorithm

0:06:39.199,0:06:40.660
of what to do

0:06:40.660,0:06:42.250
with it, without
returning anything.

0:06:42.250,0:06:43.289
So,

0:06:43.289,0:06:45.599
a signature of our
delegate: returning type - void?

0:06:45.599,0:06:47.839
input parameter

0:06:47.839,0:06:49.309
type - string.

0:06:49.309,0:06:50.270
Then

0:06:50.270,0:06:52.279
let's pass to our
Move method

0:06:52.279,0:06:54.229
the variable of this

0:06:54.229,0:06:54.979
delegate.

0:06:54.979,0:06:56.949
In other words,
a reference to

0:06:56.949,0:06:57.639
a method

0:06:57.639,0:07:01.349
with a congruous
signature.

0:07:01.349,0:07:07.020

0:07:07.020,0:07:08.389
And now,

0:07:08.389,0:07:10.870
let's replace an output invoke
to console of our

0:07:10.870,0:07:11.659
message

0:07:11.659,0:07:18.659
by a translation of this
message into our method.

0:07:26.300,0:07:28.869
What can we see now?

0:07:28.869,0:07:31.590
Instead of outputting
it into console,

0:07:31.590,0:07:33.380
the Move method

0:07:33.380,0:07:34.490
translates
its messages to

0:07:34.490,0:07:36.110
any other methods.

0:07:36.110,0:07:38.879
It doesn't even know
which one precisely.

0:07:38.879,0:07:39.340
A reference to that method

0:07:39.340,0:07:41.030
he receives from the
source code

0:07:41.030,0:07:42.009
from the outside.

0:07:42.009,0:07:43.569
Therefore, we've

0:07:43.569,0:07:45.249
completely left behind

0:07:45.249,0:07:48.240
the way of outputting
our information to the

0:07:48.240,0:07:49.569
user interface.

0:07:49.569,0:07:51.629
So how can we
use this method

0:07:51.629,0:07:52.710
now?

0:07:52.710,0:07:55.710
That's how the invoke of our
method from the previous

0:07:55.710,0:07:57.330
example	looked like.

0:07:57.330,0:07:59.229
Now

0:07:59.229,0:08:00.639
let's do this.

0:08:00.639,0:08:01.419
First of all,

0:08:01.419,0:08:04.069
we've declared
the Show method,

0:08:04.069,0:08:05.999
that was suitable
to our delegate

0:08:05.999,0:08:08.740
signature.
Now we need to

0:08:08.740,0:08:15.740
assign a reference.
Let's do this.

0:08:18.110,0:08:21.139
Great, we've assigned
a reference to our method

0:08:21.139,0:08:23.659
variable. Then
let's pass

0:08:23.659,0:08:30.659
this variable as a second
parameter tp the Move method.

0:08:32.450,0:08:35.590
Great. Run. Look.

0:08:35.590,0:08:38.510
We see pretty much
the same.

0:08:38.510,0:08:40.469
But this time,
look here.

0:08:40.469,0:08:42.969
The Show method
allows you to change

0:08:42.969,0:08:45.240
output type to

0:08:45.240,0:08:47.700
any other way now:

0:08:47.700,0:08:49.759
- by web-interface;

0:08:49.759,0:08:51.609
- by Windows application;

0:08:51.609,0:08:54.240
and so on. That's why
you need the delegates -

0:08:54.240,0:08:56.250
to built up a higher
levels of

0:08:56.250,0:08:58.030
the abstraction.

0:08:58.030,0:08:59.640
Now let's briefly
talk about such

0:08:59.640,0:09:02.490
thing as a generic
delegate. Have a look:

0:09:02.490,0:09:04.560
we have a delegate
that has a reference to

0:09:04.560,0:09:06.690
a method with a signature - void (- string).

0:09:06.690,0:09:09.030
It may happen,
that in some

0:09:09.030,0:09:11.550
other place inside
our code we will have

0:09:11.550,0:09:13.019
exactly the same
situation,

0:09:13.019,0:09:15.209
and we'd need one
more delegate, that

0:09:15.209,0:09:17.850
has a reference to another
method - void (- string).

0:09:17.850,0:09:20.540
We might need a third delegate,
a forth and so on.

0:09:20.540,0:09:22.820
In theory, we can
create as many delegates,

0:09:22.820,0:09:25.130
as we want
with the same

0:09:25.130,0:09:26.490
signature.

0:09:26.490,0:09:28.620
The only difference
between them

0:09:28.620,0:09:31.700
will be their names and
the input parameters.

0:09:31.700,0:09:33.390
You might have
a question:

0:09:33.390,0:09:36.620
why do we need so many
equal delegates?

0:09:36.620,0:09:38.850
Microsoft developers
had thought the same

0:09:38.850,0:09:40.560
and created
a structure of

0:09:40.560,0:09:42.960
a generic delegates.

0:09:42.960,0:09:45.740
Let's look at two
types of these delegates.

0:09:45.740,0:09:47.959
First of all, it's the Action delegate.

0:09:47.959,0:09:50.059
Input parameters types
are listed in

0:09:50.059,0:09:51.260
chevrons.

0:09:51.260,0:09:53.910
This delegate can have
a reference to any

0:09:53.910,0:09:56.800
method without
output parameter, and

0:09:56.800,0:09:58.720
his input parameter types

0:09:58.720,0:10:01.630
are T1, T2, ..., Tn
and so on.

0:10:01.630,0:10:03.930
Letters T1 and T2 represent

0:10:03.930,0:10:05.090
a specific type.

0:10:05.090,0:10:07.570
Here's another example:

0:10:07.570,0:10:10.810
Action <string> - it's a delegate,
that fits into the structure

0:10:10.810,0:10:12.480
we saw in the previous

0:10:12.480,0:10:13.200
example.

0:10:13.200,0:10:15.510
It has a reference to a method
that has no output

0:10:15.510,0:10:18.060
parameter and the only one
input parameter - string.

0:10:18.060,0:10:19.620
Action<int, bool>

0:10:19.620,0:10:21.290
has a reference to a method
with zero output

0:10:21.290,0:10:22.590
parameters and with
two input

0:10:22.590,0:10:24.629
parameters with types - int and - bool.

0:10:24.629,0:10:26.590
This is the first and
the most popular

0:10:26.590,0:10:28.280
generic delegate.

0:10:28.280,0:10:29.449
The second delegate is

0:10:29.449,0:10:32.330
Func<T1, T2... T out>.

0:10:32.330,0:10:34.060
Unlike the previous
delegate

0:10:34.060,0:10:36.330
it has a reference to
a method with

0:10:36.330,0:10:37.160
an output parameter.

0:10:37.160,0:10:38.500
A type of an output
parameter

0:10:38.500,0:10:40.360
is defined by
the last element

0:10:40.360,0:10:41.470
of a sequence.
Which means, that

0:10:41.470,0:10:43.470
- T out is
the last type in

0:10:43.470,0:10:45.970
chevrons. It
defines what type

0:10:45.970,0:10:48.180
is going to have an output

0:10:48.180,0:10:49.930
parameter of our method.

0:10:49.930,0:10:51.670
One more example:

0:10:51.670,0:10:53.130
Func<string, string>

0:10:53.130,0:10:55.100
has a reference to a method
with an output

0:10:55.100,0:10:57.110
parameter type - string
and one input

0:10:57.110,0:10:58.580
parameter with a type - string too.

0:10:58.580,0:11:01.450
Func<ing, string, bool>
has a reference to a method

0:11:01.450,0:11:03.210
with an output
parameter type - bool

0:11:03.210,0:11:06.760
and two input parameters of
a type - int and - string.

0:11:06.760,0:11:09.100
Let's try to replace
our delegate with

0:11:09.100,0:11:14.260
a generic delegate.
It won't take much time.

0:11:14.260,0:11:20.220
We've declared it here,

0:11:20.220,0:11:24.460
and now we are changing
its type here.

0:11:24.460,0:11:25.930
That's all,
our application

0:11:25.930,0:11:28.580
has been compiled, and, as
you can see, it's working!

0:11:28.580,0:11:29.860
What are the pros of

0:11:29.860,0:11:31.190
the generic delegates?

0:11:31.190,0:11:33.980
- We don't need to
declare any extra

0:11:33.980,0:11:35.430
delegates anymore;

0:11:35.430,0:11:37.190
- Our code has become shorter now.

0:11:37.190,0:11:38.840
Of course, there is
no pros

0:11:38.840,0:11:39.630
without cons.

0:11:39.630,0:11:40.570
What are the cons?

0:11:40.570,0:11:42.870
Here, let's imagine,
that we might want

0:11:42.870,0:11:45.280
to use our delegate.

0:11:45.280,0:11:48.540
But we've lost
parameter name.

0:11:48.540,0:11:50.970
Now it's marked as - obj.

0:11:50.970,0:11:53.300
Parameter names

0:11:53.300,0:11:55.570
don't influence any functions.

0:11:55.570,0:11:56.910
Compiler doesn't care

0:11:56.910,0:11:58.949
about a parameter name.

0:11:58.949,0:12:01.930
It can be -obj or whatever.

0:12:01.930,0:12:03.750
But a name influences
a lot when we talk

0:12:03.750,0:12:05.920
about code's readability.

0:12:05.920,0:12:07.980
For comparison, let's look
at our previous example.

0:12:07.980,0:12:08.989
Have a look

0:12:08.989,0:12:10.889
here: when we
try to call

0:12:10.889,0:12:11.480
a method

0:12:11.480,0:12:13.069
with some parameters,

0:12:13.069,0:12:15.629
we can see a clue
about a parameter name.

0:12:15.629,0:12:17.079
Since now we address
not to any anonymous

0:12:17.079,0:12:19.270
parameter, but to a specified
parameter - message.

0:12:19.270,0:12:21.150
Of course, it's much
more informative than

0:12:21.150,0:12:22.590
a plain - obj.

0:12:22.590,0:12:24.490
Now let's see
how our delegate

0:12:24.490,0:12:26.010
will be transformed
to an event,

0:12:26.010,0:12:28.490
step-by step.
Have a look, please.

0:12:28.490,0:12:30.610
Our Move method
has a second parameter

0:12:30.610,0:12:32.640
as a reference to
another method.

0:12:32.640,0:12:35.290
Sometimes, it's not
comfortable. Imagine, we

0:12:35.290,0:12:37.510
want to invoke the Move
method without getting any

0:12:37.510,0:12:38.830
messages from it.

0:12:38.830,0:12:41.210
In this case, the second
parameter will be

0:12:41.210,0:12:41.940
useless.

0:12:41.940,0:12:44.230
We want to create
an optional subscription

0:12:44.230,0:12:45.860
to these messages.
We can subscribe,

0:12:45.860,0:12:48.010
if we want. Or we can
not subscribe either.

0:12:48.010,0:12:50.350
We could do it
this way:

0:12:50.350,0:12:52.460
- to create a Moving property;

0:12:52.460,0:12:55.840
- to invoke this property here;

0:12:55.840,0:13:02.060
- to delete this parameter here.

0:13:02.060,0:13:04.290
In this case, an invoke
of our method

0:13:04.290,0:13:05.050
looks like this:

0:13:05.050,0:13:07.339
after creating
an instance of a class,

0:13:07.339,0:13:09.509
we assign a reference to
our method for

0:13:09.509,0:13:10.650
a Moving property,

0:13:10.650,0:13:12.050
then - we call

0:13:12.050,0:13:12.980
the Move method.

0:13:12.980,0:13:14.050
Look here, please,

0:13:14.050,0:13:16.080
it's all the same.

0:13:16.080,0:13:17.500
But at the same
time, we have

0:13:17.500,0:13:18.920
an extra option -

0:13:18.920,0:13:20.820
we can subscribe to the
event, if we want;

0:13:20.820,0:13:22.649
or we can not subscribe,
if we don't want.

0:13:22.649,0:13:24.570
Ok, let's imagine, we
don't want it.

0:13:24.570,0:13:25.380
Now

0:13:25.380,0:13:26.880
running our

0:13:26.880,0:13:28.780
application will cause
an error.

0:13:28.780,0:13:30.940
Why did that happen?
Because we didn't

0:13:30.940,0:13:33.600
assign any value to
the Move method. See?

0:13:33.600,0:13:34.670
It have - null.

0:13:34.670,0:13:36.569
Obviously, calling - null

0:13:36.569,0:13:38.000
will cause an error.

0:13:38.000,0:13:40.830
We need to make a call
to our property

0:13:40.830,0:13:42.720
an optional feature.

0:13:42.720,0:13:44.290
In order to do this, let's

0:13:44.290,0:13:46.220
add an additional

0:13:46.220,0:13:52.900
condition before the call.

0:13:52.900,0:13:54.069
Therefore,

0:13:54.069,0:13:55.459
we will call our property

0:13:55.459,0:13:58.189
only in case, when
it actually has

0:13:58.189,0:14:00.429
a reference to
any method.

0:14:00.429,0:14:02.270
What do we have now?

0:14:02.270,0:14:04.470
In case #1, we
don't subscribe to

0:14:04.470,0:14:05.480
a property.

0:14:05.480,0:14:06.950
We don't receive
any messages,

0:14:06.950,0:14:08.820
we only call the Move method.

0:14:08.820,0:14:10.600
In case #2, we
do subscribe to

0:14:10.600,0:14:13.760
a message, we do

0:14:13.760,0:14:16.380
receive messages from the Move method.

0:14:16.380,0:14:18.460
Now there's only one step
left for a fuller

0:14:18.460,0:14:20.820
understanding of what
an event is.

0:14:20.820,0:14:22.820
Let's replace our
properties to this

0:14:22.820,0:14:25.580
construct. This is what's
called an event.

0:14:25.580,0:14:27.750
- public - it's an
access modifier;

0:14:27.750,0:14:29.810
- event - it is
a keyword indicating

0:14:29.810,0:14:31.560
that we do use
an event.

0:14:31.560,0:14:33.769
EventHandler - it is our delegate,

0:14:33.769,0:14:36.129
i.e. a reference to
our method that is going to

0:14:36.129,0:14:37.649
handle our event.

0:14:37.649,0:14:39.480
I'll explain, why it's
called EventHandler

0:14:39.480,0:14:41.999
later. And finally,
EventName - it is

0:14:41.999,0:14:44.200
a name of our event.

0:14:44.200,0:14:47.330
The following form is
what's been called as

0:14:47.330,0:14:48.750
"an event without parameters",

0:14:48.750,0:14:51.010
i.e. when we call this
event, we are not 										такое событие, мы не

0:14:51.010,0:14:52.630
able to send any
parameters

0:14:52.630,0:14:53.590
to it.

0:14:53.590,0:14:56.200
The second form of an event,
this one,

0:14:56.200,0:14:58.690
declares an event with
a parameter. The difference

0:14:58.690,0:15:01.350
between them is that now
we have types in chevrons:

0:15:01.350,0:15:02.800
EventArgs.

0:15:02.800,0:15:05.220
This is a class,
where we are going to

0:15:05.220,0:15:07.260
describe our passing

0:15:07.260,0:15:08.140
parameters to.

0:15:08.140,0:15:09.370
Now, with some
help from

0:15:09.370,0:15:10.319
these forms,

0:15:10.319,0:15:13.970
let's change our
properties to the events.

0:15:13.970,0:15:18.330
Ok, we are changing the
properties,

0:15:18.330,0:15:20.840
making everything
correspond to

0:15:20.840,0:15:23.180
an event form.

0:15:23.180,0:15:28.720

0:15:28.720,0:15:32.060

0:15:32.060,0:15:33.950
That's how we can call

0:15:33.950,0:15:35.810
our event.

0:15:35.810,0:15:36.640

0:15:36.640,0:15:39.160
It's mostly alike
a property, that's been

0:15:39.160,0:15:40.390
declared earlier.

0:15:40.390,0:15:42.650
The main difference is that,
firstly, we are sending

0:15:42.650,0:15:44.620
an additional
parameter -	this,

0:15:44.620,0:15:47.380
that's indicating to our
current instance of a class;

0:15:47.380,0:15:50.459
and we are passing
a string using

0:15:50.459,0:15:52.160
an additional MovingEventArgs class

0:15:52.160,0:15:54.170
instead of a direct passing.

0:15:54.170,0:15:56.680
We'll talk about it	later.
And now one more example

0:15:56.680,0:15:58.370
of how to use
our events:

0:15:58.370,0:16:00.619
We create the Student class.

0:16:00.619,0:16:02.539
Then we subscribe to

0:16:02.539,0:16:05.410
an event, using
the following form -

0:16:05.410,0:16:07.540
here's our Moving event; it's marked

0:16:07.540,0:16:08.630
by an arrow.

0:16:08.630,0:16:10.590
Then we press +=

0:16:10.590,0:16:13.570
and VisualStudio offers

0:16:13.570,0:16:15.860
to create some method,

0:16:15.860,0:16:17.330
that is going
to respond to

0:16:17.330,0:16:18.359
a delegate,

0:16:18.359,0:16:20.090
that has been

0:16:20.090,0:16:22.070
declared in the event.

0:16:22.070,0:16:23.859
Now, let's see
this in details.

0:16:23.859,0:16:26.129
We can delete it
right away, not

0:16:26.129,0:16:28.190
going to use it.

0:16:28.190,0:16:30.420
So, our event has a
delegate, represented by

0:16:30.420,0:16:32.730
this construction:
EventHandler and MovingEventArgs

0:16:32.730,0:16:34.470
in angle brackets.

0:16:34.470,0:16:37.399
MovingEventArgs - it is a class

0:16:37.399,0:16:38.879
I've created before.

0:16:38.879,0:16:41.809
It describes the passing
of all the necessary

0:16:41.809,0:16:43.950
parameters in the event.

0:16:43.950,0:16:46.350
All classes we are
about to use inside

0:16:46.350,0:16:48.380
EventHandler must
be inherited

0:16:48.380,0:16:50.390
from an EventArgs base class

0:16:50.390,0:16:52.310
We will discuss the
inheritance later.

0:16:52.310,0:16:54.570
For now, let's
fill in a form

0:16:54.570,0:16:56.510
to declare an
additional class,

0:16:56.510,0:16:58.490
that is going to
have our

0:16:58.490,0:16:59.620
parameters.

0:16:59.620,0:17:00.489
After that,

0:17:00.489,0:17:02.549
we describe all
passing parameters

0:17:02.549,0:17:04.179
using a class
constructor.

0:17:04.179,0:17:06.319
We need to create
a property to each

0:17:06.319,0:17:07.169
parameter.

0:17:07.169,0:17:09.579
It will be great, if
an accessor - get of this

0:17:09.579,0:17:11.589
property has
a public modifier,

0:17:11.589,0:17:13.839
and an accessor - set
has a private modifier,

0:17:13.839,0:17:15.789
in order to give us an
ability to assign

0:17:15.789,0:17:17.309
this properties
only inside

0:17:17.309,0:17:19.589
our additional class
How does a passing of

0:17:19.589,0:17:21.409
the parameters look like?

0:17:21.409,0:17:23.259
We pass parameters
to a constructor

0:17:23.259,0:17:24.830
while calling an event;

0:17:24.830,0:17:26.539
we receive these

0:17:26.539,0:17:28.269
parameters through

0:17:28.269,0:17:29.999
the corresponding
properties in

0:17:29.999,0:17:31.649
a class handler, in
a method handler, to be precise.

0:17:31.649,0:17:34.299
Here, we've passed our string

0:17:34.299,0:17:35.800
as a first parameter
of our additional

0:17:35.800,0:17:36.649

0:17:36.649,0:17:38.850
MovingEventArgs class

0:17:38.850,0:17:41.090
in a Student class.

0:17:41.090,0:17:43.580
Let's clarify, that
we'll call a class

0:17:43.580,0:17:45.490
that generates the events
as a class -

0:17:45.490,0:17:46.370
- publisher.

0:17:46.370,0:17:48.800
In our case,
the Student class is

0:17:48.800,0:17:50.400
a class-publisher.

0:17:50.400,0:17:52.210
And we'll call the classes
that subscribe to

0:17:52.210,0:17:54.180
the events of
a class-publisher

0:17:54.180,0:17:56.740
as the classes -
subscribers.

0:17:56.740,0:17:58.700
So, we've defined
a method for

0:17:58.700,0:18:00.460
an event, each time
it occurs

0:18:00.460,0:18:03.040
in our class -
subscriber.

0:18:03.040,0:18:05.690
We receive all event
parameters through

0:18:05.690,0:18:07.210
- a variable - e;

0:18:07.210,0:18:08.920
- an argument - e,

0:18:08.920,0:18:11.340
that has the MovingEventArgs type

0:18:11.340,0:18:12.039
Have a look, please.

0:18:12.039,0:18:14.789
Here's our message.
That's how we

0:18:14.789,0:18:17.030
can reduce our code

0:18:17.030,0:18:18.810
to the structure we've
discussed at the

0:18:18.810,0:18:21.750
very beginning.

0:18:21.750,0:18:23.260
Let's run it

0:18:23.260,0:18:25.100
and make sure
our code's working

0:18:25.100,0:18:28.840
exactly how we want
it to work.

0:18:28.840,0:18:31.169
We've just discussed
a standard form

0:18:31.169,0:18:34.030
of an event with
a standard delegate.

0:18:34.030,0:18:36.540
A standard form of an event
looks like this:

0:18:36.540,0:18:40.010
The 1st parameter of a delegate
is always a type

0:18:40.010,0:18:40.610
- object,

0:18:40.610,0:18:42.820
that has a reference to
a class-publisher.

0:18:42.820,0:18:44.700
In our case, it's
the Student class.

0:18:44.700,0:18:45.889
The 2nd parameter is

0:18:45.889,0:18:48.639
a variable of a type
that has been inherited

0:18:48.639,0:18:51.179
from EventArgs,
where we pass all the

0:18:51.179,0:18:53.470
necessary parameters to.

0:18:53.470,0:18:55.809
You might think
that this form is

0:18:55.809,0:18:57.809
kind of hard for you,
but it is

0:18:57.809,0:18:58.990
a common form.

0:18:58.990,0:19:02.370
You can use
an abstract form of

0:19:02.370,0:19:04.900
a delegate
this way:

0:19:04.900,0:19:06.690
If you don't want

0:19:06.690,0:19:07.810
to send

0:19:07.810,0:19:09.750
a reference to
a class-publisher,

0:19:09.750,0:19:11.300
or don't want to
create an additional

0:19:11.300,0:19:12.769
class MovingEventArgs;

0:19:12.769,0:19:14.649
or you want just to
create an event,

0:19:14.649,0:19:16.799
then you have a right to
replace your delegate

0:19:16.799,0:19:18.769
to a generic delegate,
that we'd discussed

0:19:18.769,0:19:19.580
before,

0:19:19.580,0:19:22.070
i.e. Action <string>.

0:19:22.070,0:19:24.760
It doesn't require
any extra efforts,

0:19:24.760,0:19:27.580
and it receives only

0:19:27.580,0:19:29.930
our string,

0:19:29.930,0:19:31.950
just like we've seen
in our previous

0:19:31.950,0:19:32.590
examples.

0:19:32.590,0:19:34.659
Of course, in this case,
we will need to modify

0:19:34.659,0:19:37.409
a method-receiver
as well. See this?

0:19:37.409,0:19:39.410
A compiler shows that

0:19:39.410,0:19:41.210
a signature of a method
doesn't correspond to

0:19:41.210,0:19:42.890
the declared event.

0:19:42.890,0:19:44.940
It order to make
it fit, we need to

0:19:44.940,0:19:47.900
simply change it to

0:19:47.900,0:19:49.309
a parameter - string

0:19:49.309,0:19:52.280
and pass it to a console.

0:19:52.280,0:19:54.360
Once again,
we can make sure

0:19:54.360,0:19:57.000
that everything is
copying and working fine.

0:19:57.000,0:19:58.110
Again:

0:19:58.110,0:19:58.830

0:19:58.830,0:20:01.179
this form is easier,

0:20:01.179,0:20:01.920
no doubt,

0:20:01.920,0:20:06.160
but at the same time,
this form is less readable.

0:20:06.160,0:20:08.050
In here, when
we try to

0:20:08.050,0:20:10.340
pass a parameter

0:20:10.340,0:20:11.440
to an event,

0:20:11.440,0:20:13.330
instead of using a parameter 			
name, we get 						

0:20:13.330,0:20:14.680
- obj again. 					

0:20:14.680,0:20:16.660
If there is only
one parameter,

0:20:16.660,0:20:18.070
and the event is known -

0:20:18.070,0:20:19.560
it's not that bad.

0:20:19.560,0:20:21.600
But if the event gets

0:20:21.600,0:20:23.910
a lot of parameters, they
will be named as

0:20:23.910,0:20:25.740
-obj1, - obj2, - obj3
and so on.

0:20:25.740,0:20:27.390
As you can see,
the readability

0:20:27.390,0:20:28.280
suffers a lot!

0:20:28.280,0:20:30.040
That's why I
always recommend

0:20:30.040,0:20:31.460
using a full

0:20:31.460,0:20:32.830
form of an event.

0:20:32.830,0:20:35.090
Also, because one day

0:20:35.090,0:20:37.360
other developers
might need a link

0:20:37.360,0:20:38.410
to a class-publisher,

0:20:38.410,0:20:41.910
and there is no such thing
in a short form of an event.

0:20:41.910,0:20:43.700
Let's finish talking

0:20:43.700,0:20:46.720
about the events now.
As I've said, discussing

0:20:46.720,0:20:48.220
just one event type

0:20:48.220,0:20:49.630
took more time than

0:20:49.630,0:20:51.260
talking about all
other members

0:20:51.260,0:20:51.830
of a type.

0:20:51.830,0:20:54.019
It is because
all events are based on

0:20:54.019,0:20:56.570
a pretty hard part
of a C# language

0:20:56.570,0:20:58.850
called the delegates.
Hope, my lesson									

0:20:58.850,0:21:01.279
dedicated to the usage								
of the events and the delegates

0:21:01.279,0:21:03.860
was interesting and
understandable to you.

0:21:03.860,0:21:04.909
In case you have						

0:21:04.909,0:21:07.590
any questions, 					
suggestions or 				

0:21:07.590,0:21:08.780
ideas, please, 				

0:21:08.780,0:21:11.020
feel free to write me a comment.		
I will answer to all of them and 				

0:21:11.020,0:21:11.780
your opinion is important!
Thank you!			
