MepeBogp, ctaTby gna Xabpa c pyccKoro Ha aHrNMACKUNA:

B BereTe mbl LONTO 1 yCNELWHO 3aHUMAEMCA BUPTYaNbHbIM XOCTUHIOM, MUCNOb3yem mHoro OpenSource-
peweHnit, N Tenepb HacTaso Bpems MNOAENUTbCA C coobLWecTBOM Hawen paspaboTkoi: ¢dainoBbim
meHeaepom Sprut.lO, KoOTOpbI Mbl paspabaTtbiBain A48 HaWWX NOJSib3oBaTesiel U KOTOPbIA
MCNONb3yeTCs Y Hac B NaHenW ynpasaeHuA. MNpuraaliaem BCEX KeNaoLWMX NPUCOeaMHUTBCA K ero
pa3paboTke. O TOM, KaKk OH pa3pabaTbiBanca M NOYEMy HAC HE YCTPOMUAU CYLLECTBYIOLLME aHAOMN, KaKkue
KOCTbI/IY TEXHO/IOTMM Mbl UCNO/Ib30BANIN M KOMY OH MOXKET NPUFrOANTBLCSA, PACCKaXKeM B 3TOW CTaTbe.

Caiit npoekra:https://sprut.io

[emo aoctynHo no ccbinke: https://demo.sprut.io:9443
NcxogHbid Koa: https://github.com/LTD-Beget/sprutio
3auem ns3obpeTaTtb CBOM GanNoBbIN MeHeaKep

B 2010 roay Mbl wucnonb3oBanm NetFTP, KoOTopblii BMNOJMHE CHOCHO pelwan 3adayu
OTKPbITb/3arpy3nTb/noAnpasnTb HECKOIbKO $aisios.

OaHaKo, N0Nb30BaTeNAM MHOTMA4A XOTe/I0Cb HayuUTbCA NEPEHOCUTb CalTbl MEXAY XOCTUHIaMM UK Y Hac
MeXK Y aKKayHTaMM, HO caiT 6bln 6ONbLIOKN, @ MHTEPHET Y NO/b30BaTe/IeN He Camblit XopoLnin. B utore,
WU Mbl fieNann 3To camm (4To ABHO Bblno BbicTpee), nnm obbacHANN, uTo Takoe SSH, MC, SCP u npouune
CTPALLHbIE BELM.

Torga y Hac v nosewunacb uaes caenatb WEB aByx-naHenbHblt $aiinoBbiit MeHearKep, KOTopbli
paboTaeT Ha CTOPOHE CepBEpa M MOMKET KOMMPOBaTb MeXAY PasHbIMU MCTOYHWMKAMM Ha CKOPOCTM
cepBepa, a Tak¥Ke, B KOTOPOM ByayT: NOUCK Mo palinam 1 AUPEKTOPUAM, aHa/IM3 3aHATOro MecTa (aHanor
ncdu), npocrtan 3arpy3ka ¢ainos, Hy 1 MHOTo BCEro MHTepecHoro. B obuiem, Bce To, 4To 06/1er4nno 6bl
U3Hb HALLUMM NO/Ib30BATENAM U HaM.

B mae 2013 mbl BbIIOXWAN €ro B NPOAAKLUH Ha Halem XOCTUHre. B HEKOTopbIX MOMEHTaxX Noay4YnaoChb
OarKe Nlyylle, Yem Mbl XOTeNM U3HAYaNbHO — ANA 3arpy3ku ¢Gainnos 1 AOCTyna K SIoKaabHON dalinoson
cucTeme Hanucanu Java annset, No3BosAlowWwmMi BbibpaTb daisibl U BCce cpasy CKONMMPOBATb HA XOCTUHT
MM HaobopPOT C XOCTUHra (KyAa KONMPOBaATb He TaK BaXKHO, OH ymesn paboTtaTtb U C yaaneHHbim FTP 1 ¢
OOMaLUHEN AMpPeKTopueir nonb3oBaTend, HO, K COXKajeHuto, CKOopo Opaysepbl He 6yayt ero
noaAep*KueaThb).

MpountaB Ha Xabpe Npo aHafoOr, Mbl PELWMUIM BbINOXUTL B OpenSource Hal MPOAYKT, KOTOPbIi
NOlYYNNCA, KaK HAM KaXKeTcA, OT/IMYHbIM paboTatowmm U MOXKET NPUHECTU Nonb3y. Ha otaeneHue ero
OT Hawel MHOPACTPYKTYpbl U NpuBeseHne K nogobatoliemy Buay yLWwao ewe AeBATb mecaues. MNepes
HoBbiM 2016 rogom mbl Bbinyctuam Sprut.lO.

Kak oH paboTtaet

Denann pna cebs 1 ucnosbsoBanm camble, NO HawWemy MHEHUIO, HOBble, CTU/NIbHblE, MONOAOEXHbIE
MHCTPYMEHTbI M TEXHONOMUMK. HYacTo NCNO0b30BaN TO, YTO 6b110 yXe AnAa 4vero-to caenaHo.

EcTb HekoTopas pasHuua B peanmsaumm Sprut.lO M BepcuM ANA HaALEro XOCTUHra, obycnoBneHHan
B3aMMOAENCTBMEM C Hallel naHenbto. Ona cebs Mbl MCNO/sb3yeM: MOJIHOLUEHHble odepean, MySQL,
OONONHUTENbHBIA CepBep aBTOPM3aLMM, KOTOPbIM OTBeYaeT M 3a BblbOpa KOHEYHOro cepBepa, Ha
KOTOPOM pacno/iaraeTtca KAWEHT, TPAHCMOPT MEXAY HallMMK CcepBepamu NO BHYTPEHHEen ceTn U Tak
hanee.

Sprut.lO coCTOUT N3 HECKOJIbKMX IOTMYECKMUX KOMMOHEHTOB:
1) web-mopaa,
2) nginx+tornado, npuHuUMatowme Bce obpalleHns nus web,

3) KOHeYHble areHTbl, KOTOpblE MOTYT 6bITb pa3melieHbl Kak Ha OAHOM, TaK M1 Ha MHOTUX CepBeEpax.

dakTnyeckn, AobaBMB OTAENbHbLIA C/NOM C aBTOpU3auUMeld U BbIDOPOM cepBepa, MOXHO cAenaTtb
MyNbTUCEPBEPHbIN daltnoBbii MeHeaxep (KaK B Hawel peannsaumnn). Bce snemeHTbl 10rMYECKU MOMKHO
noaenutb Ha Age Yactu: Frontend (ExtJS, nginx, tornado) n Backend (MessagePack Server, Sqlite, Redis).

Cxema B3anMoAencTBuA NpeacTaBieHa HUXKe:

Frontend

Web nHtepdeinc — Bce goctatouHo npocto, Ext)S n mHoro-mHoro koga. Koa nucanm Ha CoffeeScript. B
nepBbIX BepcuAx MCMNoab3oBasau LocalStorage AnA KewwupoBaHMA, HO B MUTOre OTKasanWcCb, TaK Kak
Konndectso 6aros npesbiwano noab3y. Nginx Mcnonb3yetca Ana otaavu ctatuku, JS Koga u dainos
yepes X-Accel-Redirect (noapobHo HuKe). OcTanbHoe OH NPocTo NpokcupyeT B Tornado, KOTOPbLIN, B
CBOIO ouepenb, ABAAETCA CBOeO6pa3HbIM POYTEPOM, NepeHanpasass 3anpocbl B HyKHbIM Backend.
Tornado xopolo macwTtabupyercs 1, Hageemca, Mbl BbIMUAUAU BCE BIOKMPOBKM, KOTOPbIE CamMM XKe U
Hagenanu.

Backend

Backend cocTouT M3 HECKONBbKMX 4EMOHOB, KOTOpblE, KaK BOAWUTCA, YMEIT MPUMHMMATbL 3anpocbl U3
Frontend. leMOHbl pacnofiaraloTcs Ha Ka*KAOM KOHEYHOM cepBepe M paboTatoT ¢ oKanbHOW dalinosoi

cuctemoi, 3arpykatoT painbl no FTP, BbINOAHAIOT ayTeHTUGUKALUMIO M aBTOpM3aLuto, paboTatoT ¢ SQLite
(HacTpolikun peaaKktopa, aocTynbl K FTP cepBepam nonb3osatens).

3anpocbl B Backend otnpasnstoTca ABYX BMAOB: CUHXPOHHbIE, KOTOPbIE BbIMNOJHAKTCA OTHOCUTENbHO
6bIcTpO (Hanpumep, NUCTUHT dannos, YTeHne daina), n 3anpocbl Ha BbINOJHEHNE KaKUX-TMBO A0Arnx
3ajauy (3arpysKa daina Ha yaaneHHbIn cepsep, yaaneHne ¢pannos/ampexktopuin 1 1.n.).

CMHXPOHHbIe 3anpocbl — obbluHbIM RPC. B KauecTBe crnocoba cepuanmnsaumm aHHbIX UCNONb3YyeTcs
msgpack, KoTopblit XopoLLo 3apekomeHA0Ban cebs B NJaHe CKOPOCTM cepuanmsauun/aecepmnanmsanmm
OAHHbIX WU NOAAEPXKKM cpean Apyrux A3blKoB. Takke paccmatpusanu python-cneunduuHbiii rfoo u
ryrnosckui protobuf, Ho nepBbIli He NogoLwen n3-3a NpMBA3KK K python (1 K ero Bepcusim), a protobuf, ¢
€ro reHepaTopamMm Koaa, Ham NOKa3ascA U3ObITOYHLIM, T.K. YUNCNO YAANEHHbIX NPOLLeAYp He U3MmepsaeTca
OEeCATKAMM U COTHAMM M HeobXoaMMOCTH B BbiHOCE APl B oTAenbHble proto-¢alinbl He bbino.

3anpocb! Ha BbINOJIHEHME AOJITUX OMEpPauUii Mbl PeLInIv peasrm3oBaTb MaKCMMabHO MPOCTO: MeXAy
Frontend n Backend ecTb 06wmit Redis, B KOTOPOM XPaHUTCS BbINOJIHAEMbIA TacK, ero cTtatyc u nobble
Apyrve QAaHHble. [N 3anycka 3a4aydn Mcnosib3yetca OB6blYHbIM CMHXPOHHBLIM RPC-3anpoc. Flow
NoJly4aeTca TakoM:

Frontend Knager B peguc 3ag,a4y co CTaTyCOM «wait»
Frontend aenaeT cMHXPOHHBINM 3anpoc B backend, nepeaasas Tyaa id 3agaum

Backend npuHMMaeT 3agayy, CTaBuT cTaTyc «running», aenaeT fork n BbiNoAHAET 33434y B fOYEPHEM
npouecce, cpasy Bo3Bpallasn oTeeT Ha backend

Frontend npocmaTpuBaeT CTaTyc 3a4a4M UAN OTCAEKMNBAET USMEHEHME KaKMX-TMBO AaHHbIX (Hanpumep,
KO/IMYECTBO CKONMPOBaHHbIX $palianos, KOTOpPoe nepuoamnyeckn obHosaaetcs ¢ Backend).

MHTepecHble Kelcbl, KOTOpble CTOUT YNOMAHYTb

3arpyska ¢amnnos c Frontend

3apava:

3arpy3uTb ¢alin Ha KOHeuYHbllh cepBep, Npu atom Frontend He mmeeT goctyna K daisioBon cucreme
KOHEeYHoro cepsepa.

PeweHune:

[na nepenaun dannos msgpack-server He NOAX0AMN, OCHOBHaA NPUYMHA Bbla B TOM, YTO NaKeT He Mor
6bITb NepenaH NobalToBO, a TONbKO LEANKOM (ero Haao CHayana MOAHOCTbIO 3arpysnTb B NamATb U
TONIbKO MOTOM YKe cepuann3oBbiBaTb M nepedasaTb, Npu 6onbliom pasmepe daina byaet OOM), B
uTore peLleHo 6bI10 NCNOAb30BaTb OTAE/IbHOIO AeMOoHa A4J1A 3Toro.

Mpouecc onepaummn NOAYYNACA CneayroLwmii:

Mbl nonyyaem ¢ann oT nginx, NMWEM ero B COKeT Hallero AeMOHa C 3aro/IoBKOM, TAe YKas3aHo
BpemeHHoe pacnoJsioxkeHune ¢anna. N nocne Toro, Kak gpaa NoNHOCTbIO NepedaH, oTnpasBasem 3anpoc B
RPC Ha nepemeuweHue daiisia B KOHEYHOE pacnonoxeHue (ye K nonb3oBaTento). Ana paboTbl C
coKeTom ucnonb3yem naket pysendfile, cam cepBep camonucHbiM Ha 6ase cTaHAAPTHOM MUTOHOBCKOM
61bnnoTekmn asyncore

OI'IpE[],EJ'IEHME KOONPOBKU

3apayva:

OTKpbITb ¢anal Ha pedakTUpPOBaHWE C onpedesieHMeM KOAMPOBKWU, 3anmcaTb C YYETOM WUCXOAHOM
KOANPOBKM.

Mpobnembl:

Ecnn y nonb3oBaTeN HEKOPPEKTHO PAcno3HaBanacb KOAMPOBKA, TO NPU BHECEHUWN U3MEHEHMI B daitn C
nocaeaytoLLei 3anncbio Mbl Moxkem noayuntb UnicodeDecodeError n nameHeHus He 6yayT 3anucaHsl.

Bce «KOCTbIM», KOTOpble B UTOre HbIAM BHECEHbI, ABNAIOTCA UTOrOM paboTbl Mo TMKeTam ¢ dainamu,
nosiydeHHbIMM OT MOAb30oBaTenei, Bce «npobnemHble» daknbl Mbl TaKXe MUCNojab3yem AnA
TECTMPOBaHMA NOC/ie BHECEHHUI USMEHEHMUI B KOa,

PeweHwue:

NccnenoBaB MHTEPHET B NOMCKAX AaHHOTO pelleHns, Hawan 6ubanoTteky chardet. JaHHas 6ubanoTeka,
B CBOIO oyepeab, ABaseTcAa noptom 6ubamnotekm uchardet ot Mozilla. OHa, Hanpumep, ncnonb3yerca B
nssecTHom pegaktope https://notepad-plus-plus.org

MpoTecTMpoBaB ee Ha peasibHbiX NPMMEpPax, Mbl MOHS/IN, YTO B pPeasibHOCTU OHa MOXKeT owunbaTbes.
Bmecto CP-1251 morkeT BblaaBaTbcs, Hanpumep, «MacCyrillic» namn «I1SO-8859-7», a Bmecto UTF-8
MOXKeT bbITb «ISO-8859-2» MM YACTHbIN CNyyal «asciin.

Kpome aToro, HekoTopble ¢aibl Ha XocTuHre bbiamn utf-8, Ho cogepanu cTpaHHble CUMBOJIbI, TO X OT
pPeaaKTopoB, KOTOPble HE YMeloT KOppPeKTHO paboTatb ¢ UTF, To i ewwe OTKyAa, CneumanbHo ANs Takux
C/lyYaeB TaKKe NPULWAOCh 406aBAATL KKOCTbIANY.

Mpumep pacnosHaBaHUA KOANPOBKK U UTeHMA $aliios, C KOMMEHTaPUAMM

MapannenbHbIN NOUCK TEKCTa B panaax c y4eToM KOAMPOBKKM daina

3apgava:

OpraHu3oBaTb MOUCK TeKcTa B ¢ainax C BO3MOMHOCTbIO MCNOAb30BaHMA B UMmeHM «shell-style
wildcards», To ecTb, Hanpumep, 'pupkin@*.com' 'S* =42;' nr.a.

MNpobnembl:

Mosib3oBaTe b BBOAUT CNOBO « KOHTAKTbI» — MOMUCK MOKa3blBaeT, YTO HeT $paisioB C AaHHbIM TEKCTOM, a B
peanbHOCTU OHM eCTb, HO Ha XOCTUHIEe Y HaC BCTPEYaeTCss MHOXECTBO KOANPOBOK Aaxe B pamKax 04HOro
npoekra. Mo3ToMy NMOUCK TaKXKe A0/IKEH YUUTbIBATb 3TO.

HecKoNbKO pa3 CTOJIKHY/IMCb C TEM, YTO NOAb30BaTEAM MO OWMBKEe MOrAM BBOAUTbL /H0BbIE CTPOKKU U
BbIMO/IHATL HECKOJ/IbKO Ofepaumini nomcka Ha 60/bLIOM KO/MYECTBE Manok, B AajbHEWLEeM 3TO
NPUBOAMNIIO K BO3PACTaHMIO Harpy3Ku Ha cepeepax.

PeweHune:

MHOro3aa4yHocTb OpraHM3oBaaM AOCTAaTOMHO CTaHAAPTHO, Mcnoab3ya moayab multiprocessing n age
ouyepeamn (CNUCoK Bcex $alinoB, CNUCOK HalgeHHbIX GaiioB C UICKOMbIMKN BXOXKAeHUAMK). OaMH BOpKep
CTPOWUT CMMCOK ainoB, a ocTanbHble, paboTas napannesbHo, PasbupatoT ero M OCyLLecTBAAIT
HenocpeacTBEHHO MOMUCK.

MCKOMYIO CTPOKY MOXHO NPeacTaBUTb B BMAE PEryNspHOro BblParKeHWa, ucnonb3ya nakeTt fnmatch.
Ccblfika Ha UTOTOBYIO peann3aLmnio Noucka.

Ona peweHna npobnembl C KOAMPOBKAMW NpuMBEAEeH NpUMEpP KoAa C KOMMEHTapuamM, Tam

NCNosb3yeTca yKe 3HaKoMbI Ham nakeT chardet.

Mpumep peannsaumnm BopKepa

B uTOroBoit peanusaummM pobaBneHa BO3MOXKHOCTb BbICTAaBUTb BPEMA BbINMOJHEHWUA B CEKyHAaAX
(tamayT) — no ymonuyaHuio BblbpaH 1 4yac. B camux mpoueccax BOPKEPOB MOHMMEH npuopuTer
BbINO/IHEHUA ANA CHUMKEHMA HArpy3Ku Ha AMCK U Ha npoLeccop.

PacnakoBKka 1 co3aaHue $paifoBbIX ApPXNBOB

3agava:

[aTb Nnonb3oBaTeNAM BO3MOXKHOCTb CO34aBaTb apXuBbl (4OCTYNHbI zip, tar.gz, bz2, tar) u pacnakoBbiBaTb
nx (gz, tar.gz, tar, rar, zip, 7z)

Mpobnembi:

Mbl BCTPETUNIM MHOXKECTBO Npobsiem C «peanbHbIMU» apXuMBamu, 3TO U MUMmeHa GaiioB B KOAMPOBKE
cp866 (DOS), n obpaTHble cnewn B umeHax ¢paiinos (windows). HekoTopble 6UbAMOTEKN (CTaHAapPTHan
ZipFile python3, python-libarchive) He paboTanu c pycckmmn umeHamu BHYTpU apxmsa. HekoTopble
peanusaunmn 6mMbnnoTtek, B yacTHocTU SevenZip, RarFile He ymeloT pacnakoBbiBaTb NycCTble Manku u
daiinbl (B apxmBax ¢ CMS oHM BCTpevatoTcs MOCTOAHHO). TakKe Nonb3oBaTeNM BCeraa XoTAT BUAETb
npoLecc BbINOJHEHMA OnepaLMm, a Kak 3To caenaTb eciv He No3BonseT bubanoteka (Hanpumep NpocTo
Aenaetcsa Bbi3oB extractall())?

PeweHnune:

Bubnuotekun ZipFile, a Takke libarchive-python npuwnock McnpasaaTe M NOAKAOYATL KaK OTAe/NbHbIE
nakeTbl K npoekTy. s libarchive-python npuwnock caenatb popk 6MBAMOTEKM M afAanTUPOBATb €€ Nog,
python 3.

Co3sgaHue $alifioB M Nanok c HyneBbiM pasmepom (bar 3amedyeH B 6ubaMoTekax SevenZip u RarFile)
NPULWAOCL AenaTb OTAE/NbHbIM LMKAOM B CAMOM Hayane Mo 3arosioBkam ¢ainios B apxuse. Mo Bcem
6aram paspaboTumKkam OTMMCanM, Kak Haligem Bpemsa To oTnpasum pull request um, cyas no scemy,
MCMpPaBAATb OHWU 3TO CamMM He cobupatoTcs.

OTtamenbHo caenaHa obpaboTka gzip cxaTtbix ¢annos (ans gamnos sql u npou.), TyT obownocy 6e3
KOCTbI/IEM C MOMOLLLbIO CTaHAAPTHOM BUBAMOTEKN.

Mporpecc onepayumm OTCAEKMBAETCA C NOMOLLIO BOTYEPA Ha cucTeMHblIn BbizoB IN_CREATE, ncnonbsyn
6ubnnoteky pyinotify. PaboTaeT, KOHEYHO, He o4yeHb TOYHO (He Bcerga BOTYEpP cpabaTbiBaeT, Koraa
6onbluan BAOXEHHOCTb ¢dainos, nostomy aobasneH marmyeckun KoadpduumeHT 1.5), HO 3apady
0TO6Pa3nTb XOTb YTO-TO MOXOXKee A/1A N0Ab30BaATENEN BbINOAHAET. Hensoxoe peweHue, yunTbiBas, YTo
HEeT BO3MOXHOCTM OTC/IeAMUTb 3TO, HE NepenncbiBaa Bce BUBAMOTEKN A5 apXMBOB.

Kop, pacnakoBKW 1 CO34aHNA apXMBOB.

Mpumep Koga ¢ KOMMeHTapUAMM

MNoBbllWweHHble TpeboBaHMA K Be3onacHoCTH

3apgava:

He AaTb No/ib30BaTe/t0 BOSMOXHOCTM MOAYHYUTb AOCTYM K KOHEYHOMY cepBepy

Mpobnembi:

Bce 3HAlOT, YTO Ha XOCTMHTOBOM CepBEpe OAHOBPEMEHHO MOTyT HaXxoAMTbCA COTHU CaWTOB U
nonb3oBaTesiell. B nepBbiXx BepcuAx HALWeEro nNpoAyKTa BOPKEPbl MOMAW BbINOJHATL HEKOTOPble
onepauun C root-npuBMAErMAMKW, B HEKOTOPbIX C/y4yanx TeopeTUyeckn (HaBepHOEe) MOXKHO 6blno
NOJIYYMTb JOCTYN K YyXKMM dalinam, nankam, MPpoUnTaTb JNLIHEE MW YTO-TO C/IOMaTh.

KoHKpeTHble NpuMepsbl, K COXKaNeHUIo, MPUBECTM HEe MOXKeMm, barum 6biin, HO CepBEP B LLEJIOM OHU He
3aTparneBann, Aa v ABNAAMCb Bosblle HaWMMK OWKNBKaMK, HexKenun ablpoit B 6esonacHocTu. B ntobom
cnyyae, B pamKax UMHPPaCTPYKTYPbl XOCTUHIA €CTb CPEeACTBA CHUMEHUA HArpy3kuM M MOHUTOPUHTA, a B
Bepcun ana OpenSource mbl peLnan cepbesHo yAydLWnTb 6€30NacHOCTb.

PeweHnune:

Bce onepauuu 6binKn BbiHECEHbI, B Tak Ha3biBaemble, workers (createFile, extractArchive, findText) u 1.4.
Kaxablit worker, npexge yem HauyaTb paboTaTtb, BbiNoAHAeT PAM ayTeHTMdMKauuio, a Takke setuid
nosab3oBaTtens.

Mpu 3Tom BCe BOpKepbl paboTaloT Kaxapli B OTAE/bHOM MpoLecce M pasnyaloTca Anb obepTkamm
(*koem unn He xpem otseta). MMoO3TOMy, AaKe €CAM CaM alroPUTM BbINOJSIHEHWA TOWU WUAW WHOW
onepaLumn MOKeT cogepKaTb YA3BUMOCTb, ByAeT M301AUMA Ha YPOBHE NPaB CUCTEMBI.

ApXMTEKTYPA MPUIOMKEHMA TaKKe He MO3BOAAET MOAYyYMTb MPAMON A0CTyn K ¢$alinoBoi cucTeme,
Hanpumep, Yepes web-cepsep. [aHHOe pelleHWe MNO3BONAET AOCTAaTOYHO 3ODEKTUBHO YUUTbIBATHL
HarpysKy M MOHUTOPUTb aKTUBHOCTb NOJ/1b30BAaTENEN Ha CeEpBepE Nt0ObIMU CTOPOHHUMU CpeaCcTBAMMU.

YcTaHOBKa

Mbl nownu no nyTU HaMMeHbLIEro conpoTneaeHnA N BMeCTo py‘-IHOﬁ YCTaHOBKK noArotosnin o6pa3b|
Docker. YcTaHoBKa no CYTU BbINO/THAETCA HECKO/IbKUMUN KOMaHOaMU:

user@host:~$ wget https://raw.githubusercontent.com/LTD-Beget/sprutio/master/run.sh

user@host:~S chmod +x run.sh

user@host:~S ./run.sh

run.sh npoBepuT Hanuume o06pPasoB, B C/AYy4ae €C/NM UX HET CKayaeT, MU 3anyCcTUT 5 KOHTEeMHepoB C
KOMMOHEHTamm cuctembl. na o6HoBAeHUA 06pa3oB HEOOXOAMMO BbINOJHUTD

user@host:~$./run.sh pull

OcTaHoBKa M yaaneHne ob6pa3oB COOTBETCTBEHHO BbINOHAIOTCA Yepes napameTpbl stop n rm. Dockerfile
cbopKM ecTb B Koge npoekTa, cbopka 3aHnmaeT 10-20 MUHYT.

KaK No4HATb OKpY:KeHUe 1A pa3paboTku B 6anKaliee Bpema Hanvwem Ha caiite 1 B wiki Ha github.

Momorute Ham caenatb Sprut.lO nyywe

OueBnAHbIX BO3MOXHOCTEMN anAa lCl,a}'IbH(El\;ILIJ(EI'O ynydweHuma d)aﬁnosoro meHeaXxepa A0CTaTOYHO MHOTrO.

Kak Hanbonee nonesHole ana FIOﬂb3OBaTel'Iel71, HaM BNOATCA:

Nob6asutb noaaep»KKy SSH/SFTP

Oob6asuTb noaaepxKy WebDav

[Jo06aBnTb TEPMUHAN

[J06aB1Tb BO3MOXKHOCTb paboThbl ¢ Git

[06aB1Tb BO3MOXKHOCTb pacllapmsaHuns dannos

[o6aBuTb NnepekatoyeHne Tem opopmaeHme 1 co3gaHne PasanyHbIX Tem

Caenatb yHMBepcanbHbi MHTepdelic paboTbl ¢ Moayaamu

Ecan y Bac ecTb AOMNONHEHMUA, YTO MOXKET ObITb NOME3HO MO/b30BATENAM, PACCKAXKMTE HaM O HUX B
KOMMEHTAPUAX NN B CIUCKE PaccbiikKM sprutio-ru@groups.google.com.

MbI HaYHEM MX peann30BbIBaTb, HO HE NOBOIOCH 3TOrO CKa3aTb: CBOMMM CUNAMM Ha 3TO YUAYT rofdbl ecu
He gecatuneTus. MoaTomy, ecam Bbl XOTUTE HAaYyYNTbCA YMEETE NporpammmMpoBaTh, 3HaeTe Python u ExtJS
N XOTUTE MOJIYy4YUTb OMbIT Pa3paboTKM B OTKPLITOM MPOEKTE — MpuUriallaem Bac NPUCOEAUMHUTLCA K
pa3pabotke Sprut.lO. Tem 6osee, YTO 3a KaxKAayl peannsoBaHHylo ¢uuyy Mbl Bygaem BbinnayvmMBaTb
BO3Harpa*kaeHue, Tak Kak HaM He NpMAeTca peanm3oBbiBaTb €e CaMUM.

Cnncok TODO u cTaTyc BbINONHEHMA 33434 MOXXHO YBUAETb Ha caliTe NpoekTa B pasgene TODO.

Cnacmbo 3a BHMMaHue! Ecnm Byaer MHTepecHo, TO C PafoCTblo Hanuwem ewe H6onblle geTannin npo
OpraHM3aLmio NPOEKTa U OTBETMM Ha BalliM BONPOChlI B KOMMEHTaPUSAX.

CalnT npoekra: https://sprut.io

[emo goctynHo no ccbinke: https://demo.sprut.io:9443
McxoaHbin Koa: https://github.com/LTD-Beget/sprutio
Pycckuii cnncok paccbinku: sprutio-ru@groups.google.com

AHIIMIACKMI CMMCOK PacCbINKK: sprutio@groups.google.com

MepeBoa:

Development - Web file manager Sprut.lO B OpenSource

Here at BeGet we have a long and successful history of working with virtual web hosting and
implementing various open-source solutions and now it's time to share our invention with the world: file
manager Sprut.l0, which we developed for our clients and which is used in our control panel. Please feel
invited to join its development. In this article we will tell you how it was developed, why we weren't
pleased with existent file managers, which [kludges] technologies we used and who can profit from it.

Project website:https://sprut.io
Demo version available at: https://demo.sprut.io:9443

Source code: https://github.com/LTD-Beget/sprutio

[KapTnHKal

Why invent your own file manager

In 2010 we were using NetFTP, which handled such tasks as opening/loading/editing quite bearably.

However from time to time our users wanted to learn how to move websites between web hostings or
between our accounts, but the website was too large and the internet was not the best. In the end we
either had to do it ourselves (whish was obviously faster) or to explain what SSH, MC, SCP and other
horrendous things are.

That's when we had the idea to create an orthodox WEB file manager, working on the server's site,
which would be able to copy between different sources with server speed and would offer: file and

directory search, a disk usage analyzer (an analogue of ncdu), simple file uploading and a lot of other
great stuff. Let's say everything that would make our users' and our lives easier.

In May 2013 the file manager went into production on our web hosting. Some parts even turned out to
be better than we originally planned: we created a Java applet for file uploading and access to the local
file system, which allowed to select files and copy them to the web hosting or from it all at once (the
destination is irrelevant, the file manager could work both with remote FTP and user's home directory,
unfortunately soon browsers won't support it anymore).

After reading about a comparable manager on Habrahabr, we decided to publish ours as an open-source
product, which, as we think, proved itself to be [amazing] useful and highly functional. We spent
another 9 months separating it from our infrastructure and whiping it into shape. Just before NYE 2016
we released Sprut.l0.

How it works

We created it for ourselves and believe to have implemented the latest, most stylish and youthful tools
and technologies. Often we used tools that had already been developed previously.

There's a certain difference between the realization of Sprut.lO and the version we created for our web
hosting, meant to interact with our panel. For ourselves we use: full-featured queues, MySQL, an
additional authorization server, which is also responsible for selection of the endpoint server, where the
client is, transport between our servers and the internal network and so on.

Sprut.lO contains several logical components:
1) web-face,
2) nginx+tornado, receiving all web invocations,

3) endpoint agents, that can be located both on one or on several servers.

Basically you can create a multiserver file manager by adding a separate layer with authorization and
server choice (as we did in our realization). All elements can be logically separated into two parts:
Frontend (ExtJS, nginx, tornado) and Backend (MessagePack Server, Sqlite, Redis).

See the interaction scheme below:

[KapTuHKal

Frontend

Web interface; the whole thing is quite simple, ExtJS and a looot of code. Code written on CoffeeScript.
In the first versions we used LocalStorage for caching, but in the end we decided against it since there
were more bugs than benefit. Nginx is used to serve static content, JS code and files via X-Accel-Redirect
(read more below). The rest is just proxied to Tornado, which in turn is a kind of router, redirecting
queries to the correct Backend. Tornado can be perfectly scaled and we hope to have killed off all
blockings we had created ourselves.

Backend

Backend consists of several demons that, as usual, can receive queries from Frontend. The demons are
located on each endpoint server and work with the local file system, upload files via FTP, perform
authentication and authorization, work with SQLite (editor settings, access to user's FTP servers).

There are two types of queries sent to Backend: synchronous, executed relatively fast (e.g. file listing or
reading) and queries for execution of long tasks (uploading file to remote server, deleting
files/directories etc.).

Synchronous queries are a usual RPC. Data serialization is realized via msgpack, which showed itself to
be excellent in data serialization/deserialization speed and language support. We did also consider rfoo
for Python and Google's protobuf, but while the first one didn't suit because of its tie to Python (and its
versions), we thought the second one was excessive since there aren't dozens and hundreds of remote
procedures and there was no need intaking the APl out to separate proto-files.

We decided to realize queries for long operations as easily as possible: There's a shared Redis between
Frontend and Backend, which contains the executed task, its status and any other information. The task
is started with a common synchronous RPC query. The flow looks like this:

1. Frontend puts a task with the status "wait" into Redis
2. Frontend sends a synchronous query to Backend, handing over the task ID

3. Backend receives the task, sets the status "running", uses fork and executes the task in a child
process, sending a response right to Backend

4. Frontend views the task's status or controls changes of any data (such as number of copied files,
which is being updated by Backend from time to time).

Interesting cases, worth mentioning

Uploading files from Frontend

Task:

Upload files to endpoint server while Frontend does not have access to the endpoint server's file
system.

Solution:

Msgpack server didn't suit for file transfer, mainly because the package could not be transferred by
bytes, but only at once (first it needs to be completely uploades to the memory and only then be
serialized and transferred, in case of a large file you'd be OOM), so in the end we decided to use a
separate daemon for that.

The operation process looks as following:

We receive a file from Nginx, write it into our daemon socket with a title, containing the temporary file
location. After completion of the file transfer we send a query to RPC to transfer the file to its final
location (to the user). To work with the socket we use the pysendfile package, the server is selfwritten,
based on the standard Python library asyncore.

Charset recognition

Task:

Open file for editing, recognizing the charset, writing it, considering the original charset.

Problems:

If the charset hasn't been correctly recognized on the user's computer, then editing the file, we could
receive UnicodeDecodeError next time, so that changes wouldn't be saved.

All final "kludges" are result of work with file tickets, received from users, all "problematic"” files are
being used for testing after editing the code.

Solution:

Having combed through the internet, looking for a solution, we found the chardet library. This library, in
turn, is a port of the uchardet library by Mozilla. It's being used in such famous projects as the editor
https://notepad-plus-plus.org

Having tested it under various operating conditions, we noticed that in reality it could err. For instance it
might show "MacCyrillic" or "ISO-8859-7" instead of CP-1251 and "ISO-8859-2" or often "ASCII" instead
of UTF-8.

Again, some UTF-8 files on the web hosting contained weird characters, either from editors that didn't
process UTF correctly or from somewhere else. However these cases also required new "kludges".

Example of charset recognition and file reading, with comments

Parallel charset-aware text search in files

Task:

Organize text search in files with the option of using "shell-style wildcards" in the name, that is for
instance 'pupkun@*com' 'S$* = 42;' etc.

Problems:

The user searches for "Contacts", but the search result shows no files with this text while actually they
do exist. It's just that there can be many different charsets on the web hosting, even within one project,
so that the search needs to consider this as well.

A couple of times we observed a situation when by mistake users were able to put in any lines and
perform some search operations in a big amount of folders, which led to a load increment on servers.

Solution:

We organized multitasking quite commonly by using the multiprocessing module and two queues (list of
all files, list of found files with included listings). One worker builds the file list, the others review it at
the same time and perform the search itself.

The searched line can be imagined as a regular expression, using the fnmatch package. Link to final
implementation.

To solve the charset issue see a code example with comments, where we used the chardet package,
mentioned earlier.

> Worker implemention example

The final implementation contains the additional option of setting execution time in seconds (timeout),
set to 1 hour by default. The execution priority is lowered in the worker processes to drop the disk and
processor load.

Unpacking and creating file archives

Task:

Give users a possibility to create archives (zip, tar.gz, bz2, tar available) and to unpack them (gz, tar.gz,
tar, rar, zip, 7z).

Problems:

We faced a multitude of problems with "real" archives, such as file names in cp866 charset (DOS) and
backslashes in filenames (windows). Some libraries (standard ZipFile python3, python-libarchive) didn't
work with cyrillic names within the archive. Some library implementations, such as SevenZip or RarFile
can't unpack empty folders and files (archives with CMS have a lot of them). Also users always like to see
the execution process, which is impossible if the library doesn't allow (for instance if it just uses the
extractall() method).

Solution:

The libraries ZipFile and libarchive-python had to be edited and connected as separate packages to the
project. We had to create a library fork for libarchive-python and adjust it to Python 3.

Creation of zero size files and folders (bug found in SevenZip and RarFile libraries) had to be organized in
a separate loop in the very beginning after file names in the archive. We contacted the developers
concerning all bugs. As soon as we'll find some time, we'll send them a pull request, seems like they're
not planning on fixing it themselves.

Gzip editing of compressed files (for SQL dumps etc.) has been created separately, which was possible
without kludges with a standard library.

The operation progress can be controlled via a watcher with the system call IN_CREATE, using the
pyinotify library. It sure doesn't work very accurately (the watcher doesn't always react, especially if
there's a high number of files, that's why there's the magical coefficient 1.5), but it does show
something similar. Not a bad solution, keeping in mind that there's no way to tracing that without
rewriting all archive libraries.

Code for unpacking and creating archives.

Code example with comments

Raising security requirements

Task:

To keep the user from getting access to the endpoint server.

Problems:

Everyone knows that a web hosting server can host many hundreds of websites and users at the same
time. First versions of out product allowed workers to execute some operations with root-priveleges,
which theoretically (maybe) could have allowed to get access to someone else's files and read
something you shouldn't or break it.

Sadly we can't give concrete examples. There were some bugs, but they didn't really have any influence
on the server and also rather were our errors than a security hole. Anyhow, the web hosting
infrastructure provides tools for load decreasing and monitoring, in the open-source version however
we decided to seriously improve security.

Solution:

All operations had been extracted to so-called workers (createFile, extractArchive, findText) etc. Before
getting started each worker performs a PAM authentication and a setuid user.

Whereby all workers work each separately in its own process and vary in its wrap (waiting or not waiting
for response). That's why, even if the algorithm of one operation might be fragile, there's an isolation on
the level of system permissions.

Neither does the application architecture allow to receive direct access to the file system, e.g. via the
web server. This solution allows it to control the load quite effectively and monitor user activity on the
server by any external means.

Setup

We chose the path of least resistance and prepared Docker images instead of a manual setup. Basically
the setup is performed by a couple of commands:

user@host:~S wget https://raw.githubusercontent.com/LTD-Beget/sprutio/master/run.sh

user@host:~S chmod +x run.sh

user@host:~$./run.sh

run.sh will check the availability of images, download them in case of absence and start 5 containers
with system components. To update images, execute

user@host:~$./run.sh pull

Image stop and deletion can be performed via stop and rm parameters respectively. You'll find a
packaging dockerfile in the project code, the packaging takes about 10-20 minutes.

Shortly we'll write about setting up an environment for development on our website and in our Wiki on
GitHub.

Help us improve Sprut.lO

There are quite a few obvious options for further improvement of this file manager.

We think most beneficial for the user would be:

Add SSH/SFTP support

Add WebDav support

Add a terminal

Add option for work with Git

Add file sharing option

Add theme changing, configuration and creation of various themes

Create a universal interface for work with modules

If you have thoughts on what might be useful for the user, share them in the comments or in the
newsletter list sprutio-ru@groups.google.com.

We'll begin to implement them, but I'll just say it: doing it alone we'll spend years if not decades
improving it. So if you [want to learn] can program, know Python and Extl]S and want to gain the
experience of developing in an open project, we'd like to invite you to joint the development of
Sprut.l0. Even more because every implemented feature will be rewarded by us since we won't have to
implement it ourselves.

View the To-do list and task statuses on the project website in the section TODO.

Thanks for your attention! If you like, we'll be pleased to write more details about the project realization
and will respond to your questions in the comments.

Project website: https://sprut.io

Demo version available at: https://demo.sprut.io:9443
Source code: https://github.com/LTD-Beget/sprutio
Russian newsletter list: sprutio-ru@groups.google.com

English newsletter list: sprutio@groups.google.com

