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Abstract

This paper discusses the development of trainable statistical models for extracting content from
television and radio news broadcasts. In particular we concentrate on statistical finite state models for
identifying proper names and othernamed entitiesin broadcast speech. Two models are presented: the
first represents name class information as a word attribute;the second represents both word-word and
class-class transitions explicitly. A commonn-gram based formulation is used for both models. The
task of named entity identification is characterized by relatively sparse training data and issues related
to smoothing are discussed. Experiments are reported usingthe DARPA/NISTHub–4Eevaluation for
North American Broadcast News.
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1 Introduction

Simple statistical models underlie many successful applications of speech and language processing. The
most accurate document retrieval systems are based on unigram statistics. The acoustic model of virtually
all speech recognition systems is based on stochastic finitestate machines referred to as hidden Markov
models (HMMs). The language (word sequence) model of state-of-the-art large vocabulary speech recog-
nition systems uses ann-gram model ([n− 1]th order Markov model), wheren is typically 4 or less. Two
important features of these simple models are their trainability and scalability: in the case of language
modelling, model parameters are frequently estimated fromcorpora containing up to109 words. These
approaches have been extensively investigated and optimized for speech recognition, in particular, result-
ing in systems that can perform certain tasks (e.g., large vocabulary dictation from a cooperative speaker)
with a high degree of accuracy. More recently, similar statistical finite state models have been devel-
oped for spoken language processing applications beyond direct transcription to enable, for example, the
production of structured transcriptions which may includepunctuation or content annotation.

In this paper we discuss the development of trainable statistical models for extracting content from
television and radio news broadcasts. In particular, we concentrate onnamed entity(NE) identification,
a task which is reviewed in§2. Section 3 outlines a general statistical framework for NEidentification,
based on ann-gram model over words and classes. We discuss two formulations of this basic approach.
The first (§4) represents class information as a word attribute; the second (§5) explicitly represents word-
word and class-class transitions. In both cases we discuss the implementation of the model and present
results using an evaluation framework based on North American broadcast news data. Finally, in§6, we
discuss our work in the context of other approaches to NE identification in spoken language and outline
some areas for future work.
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2 Named Entity Identification

2.1 Review

Proper names account for around 9% of broadcast news output,and their successful identification would
be useful for structuring the output of a speech recognizer (through punctuation, capitalization and tok-
enization), and as an aid to other spoken language processing tasks, such as summarization and database
creation. The task of NE identification involves identifying and classifying those words or word sequences
that may be classified as proper names, or as certain other classes such as monetary expressions, dates
and times. This is not a straightforward problem. WhileWednesday 1 September is clearly a date,
andAlan Turing is a personal name, other strings, such asthe day after tomorrow, South Yorkshire
Beekeepers Association andNobel Prize are more ambiguous.

NE identification was formalized for evaluation purposes aspart of the 5th Message Understanding
Conference (MUC-5 1993), and the evaluation task definitionhas evolved since then. In this paper we
follow the task definition specified for the recent broadcastnews evaluation (referred to asHub–4E IE–
NE) sponsored by DARPA and NIST (Chinchor, Robinson, & Brown 1998). This specification defined
seven classes of named entity: three types of proper name (<location>, <person> and<organization>) two
types of temporal expression (<date> and<time>) and two types of numerical expression (<money> and
<percentage>). According to this definition the following NE tags would becorrect:

<date>Wednesday 1 September</date>

<person>Alan Turing</person>

the day after tomorrow
<organization>South Yorkshire Beekeepers Association</organization>

Nobel Prize

The day after tomorrow is not tagged as a date, since only “absolute” time or date expressions are
recognized;Nobel is not tagged as a personal name, since it is part of a larger construct that refers to the
prize. Similarly,South Yorkshire is not tagged as a location since it is part of a larger construct tagged
as an organization.

Both rule-based and statistical approaches have been used for NE identification. Wakao, Gaizauskas,
& Wilks (1996) and Hobbs, Appelt, Bear, Israel, Kameyama, Stickel, & Tyson (1997) adopted grammar-
based approaches using specially constructed grammars, gazetteers of personal and company names, and
higher level approaches such as name co-reference. Some grammar-based systems have utilized a train-
able component, such as the Alembic system (Aberdeen, Burger, Day, Hirschman, Robinson, & Vilain
1995). The LTG system (Mikheev, Grover, & Moens 1998) employed probabilistic partial matching, in
addition to a non-probabilistic grammar and gazetteer look-up.

Bikel, Miller, Schwartz, & Weischedel (1997) introduced a purely trainable system for NE identifi-
cation, which is discussed in greater detail in Bikel, Schwartz, & Weischedel (1999). This approach was
based on an ergodic HMM (i.e., an HMM in which every state is reachable from every state) where the
hidden states corresponded to NE classes, and the observed symbols corresponded to words. Training
was performed using an NE annotated corpus, so the state sequence was known at training time. Thus
likelihood maximization could be accomplished directly without need for the expectation-maximization
(EM) algorithm. The transition probabilities of this modelwere conditioned on both the previous state and
the previous word, and the emission probabilities attachedto each state could be regarded as a word-level
bigram for the corresponding NE class.

NE identification systems are evaluated using an unseen set of evaluation data: the hypothesised NEs
are compared with those annotated in a human-generated reference transcription.1 In this situation there
are two possible types of error:type, where an item is tagged as the wrong kind of entity andextent, where
the wrong number of word tokens are tagged. For example,

<location>South Yorkshire</location> Beekeepers Association

has errors of both type and extent since the ground truth for this excerpt is
1 Inter-annotator agreement for reference transcriptions is around 97–98% (Robinson, Brown, Burger, Chinchor, Douthat, Ferro,

& Hirschman 1999).
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<organization>South Yorkshire Beekeepers Association</organization> .

These two error types each contribute0.5 to the overall error count, and precision (P) and recall (R) can
be calculated in the usual way. A weighted harmonic mean (P&R), sometimes called the F-measure (van
Rijsbergen 1979), is often calculated as a single summary statistic:

P&R =
2RP

R + P
.

In a recent evaluation, using newswire text, the best performing system (Mikheev et al. 1998) returned
a P&R of 0.93. Although precision and recall are clearly informative measures, Makhoul, Kubala,
Schwartz, & Weischedel (1999) have criticized the use ofP&R, since it implicitly deweights missing
and spurious identification errors compared with incorrectidentification errors. They proposed an alter-
native measure, referred to as the slot error rate (SER), that weights three types of identification error
equally.2

2.2 Identifying Named Entities in Speech

A straightforward approach to identifying named entities in speech is to transcribe the speech automat-
ically using a recognizer, then to apply a text-based NE identification method to the transcription. It is
more difficult to identify NEs from automatically transcribed speech compared with text, since speech
recognition output is missing features that may be exploited by “hard-wired” grammar rules or by attach-
ment to vocabulary items, such as punctuation, capitalization and numeric characters.

More importantly, no speech recognizer is perfect, and spoken language is rather different from writ-
ten language. Although planned, low-noise speech (such as dictation, or a news bulletin read from a
script) can be recognized with a word error rate (WER) of less than 10%, speech which is conversational,
in a noisy (or otherwise cluttered) acoustic environment orfrom a different domain may suffer aWER
in excess of 40%. Additionally, the natural unit seems to be the phrase, rather than the sentence, and
phenomena such as disfluencies, corrections and repetitions are common. It could thus be argued that
statistical approaches, that typically operate with limited context and very little notion of grammatical
constructs, are more robust than grammar-based approaches. Appelt & Martin (1999) oppose this argu-
ment, and have developed a finite-state grammar-based approach for NE identification of broadcast news.
However, this relied on large, carefully constructed lexica and gazetteers, and it is not clear how portable
between domains this approach is. Some further discussion of rule-based approaches follows in§6.

Spoken NE identification was first demonstrated by Kubala, Schwartz, Stone, & Weischedel (1998),
who applied the model of Bikel et al. (1999) to the output of a broadcast news speech recognizer. An
important conclusion of that work — supported by the experiments reported here — was that the error of
an NE identifier degraded linearly withWER, with the largest errors due to missing and spuriously tagged
names. Since then several other researchers, including ourselves, have investigated the problem within
theHub–4Eevaluation framework.

Evaluation of spoken NE identification is more complicated than for text, since there will be speech
recognition errors as well as NE identification errors (i.e., the reference tags will not apply to the same
word sequence as the hypothesised tags). This requires a word level alignment of the two word sequences,
which may be achieved using a phonetic alignment algorithm developed for the evaluation of speech
recognizers (Fisher & Fiscus 1993). Once an alignment is obtained, the evaluation procedure outlined
above may be employed, with the addition of a third error type, content, caused by speech recognition
errors. The same statistics (P&RandSER) can still be used, with the three error types contributing equally
to the error count.

2 SERis analogous to word error rate (WER), a performance measure for automatic speech transcription. It is obtained by
SER = (I + M + S)/(C + I + M) whereC, I, M , andS denote the numbers of correct, incorrect, missing, and spurious
identifications. Using this notation, precision and recallscores may be calculated asR = C/(C+I+M) andP = C/(C+I+S),
respectively.
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Figure 1: Topologies for NE models. The left model assumes that class information is a word attribute.
The right model explicitly models word-word and class-class transitions.

3 Statistical Framework

First, let V denote a vocabulary andC be a set of name classes. We consider thatV is similar to a
vocabulary for conventional speech recognition systems (i.e., typically containing tens of thousands of
words, and no case information or other characteristics). In what follows,C contains the proper names,
temporal and number expressions used in theHub–4E IE–NEevaluation described above. When there is
no ambiguity, these named entities are referred to as “name(s)”. As a convention here, a class<other>

is included inC for those words not belonging to any of the specified names. Because each name may
consist of one word or a sequence of words, we also include a marker <+> in C, implying that the
corresponding word is a part of the same name as the previous word. The following example is taken
from a human-generated reference transcription for the 1997 Hub–4EBroadcast News evaluation data:

AT THE RONALD REAGAN CENTER
︸ ︷︷ ︸

<organization>

IN SIMI VALLEY
︸ ︷︷ ︸

<location>

CALIFORNIA
︸ ︷︷ ︸

<location>

The corresponding class sequence is

<other> <+> <organization> <+> <+> <other> <location> <+> <location>

becauseSIMI VALLEY andCALIFORNIA are considered two different names by the specification (Chinchor
et al. 1998).

Class information may be interpreted as a word attribute (the left model of figure 1). Formally, we
define a class-word token<c, w> ∈ C × V and consider a probability

p(<c, w>1, · · · , <c, w>m) =
∏

i=1···m

p(<c, w>i |<c, w>1, · · · , <c, w>i−1) (1)

that generates a sequence of class-word tokens<c, w>1, · · · , <c, w>m. Alternatively, word-word and
class-class transitions may be explicitly formulated (theright model of figure 1). Then we consider a
probability

p(c1, w1, · · · , cm, wm) =
∏

i=1···m

p(ci, wi|c1, w1, · · · , ci−1, wi−1) (2)

that generates a sequences of wordsw1, · · · , wm and a corresponding sequence of classesc1, · · · , cm.
The first approach is simple and analogous to conventionaln-gram language modelling, however the
performance is sub-optimal in comparison to the second approach, which is more complex and needs
greater attention to the smoothing procedure.

For both formulations, we have performed experiments usingdata produced for theHub–4E IE–NE
evaluation. The training data for this evaluation consisted of manually annotated transcripts of theHub–
4E Broadcast News acoustic training data (broadcast in 1996–97). This data contained approximately one
million words (corresponding to about 140 hours of audio). Development was performed using the 1997
evaluation data (3 hours of audio broadcast in 1996, about 32,000 words) and evaluation results reported
on the 1998 evaluation data (3 hours of audio broadcast in 1996 and 1998, about 33,000 words).
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4 Modelling Class Information as a Word Attribute

In this section, we describe an NE model based on direct word-word transitions, with class information
treated as a word attribute. This approach suffers seriously from data sparsity. We briefly summarize why
this is so.

4.1 Technical Description

Formulation (1) may be best viewed as a straightforward extension to standardn-gram language mod-
elling. Denotinge = <c, w>, (1) is rewritten as

p(e1, · · · , em) =
∏

i=1···m

p(ei|e1, · · · , ei−1) (3)

and this is identical to then-gram model widely used for large vocabulary speech recognition systems.
Because each tokene ∈ C × V is treated independently, those having the same word but thedifferent
class (e.g.,<date,MAY>, <person,MAY>, and<other,MAY>) are considered different members. Using this
formulation, class-class transitions are implicit. Further it may be interpreted as a classical HMM, in
which tokensei correspond to states, with observationsci andwi generated from eachei. Maximum
likelihood estimates for model parameters can be obtained from the frequency count of eachn-gram
given text data annotated with name information. Since the state sequence is known the forward-backward
algorithm is not required. Standard discounting and smoothing techniques may be applied.

The search process is based onn-gram relations. Given a sequence of words,w1, · · · , wm, the most
probable sequence of names may be identified by tracing the Viterbi path across the class-word trellis
such that

<ĉ1, · · · , ĉm> = argmax
c1···cm

p(<c, w>1, · · · , <c, w>m) . (4)

This process may be slightly elaborated by looking into a separate list of names that augmentsn-grams
of <c, w> tokens. Further technical details of this formulation are in Gotoh & Renals (1999).

4.2 Experiment

Using the experimental setup described in§3, we estimated a back-off trigram language model that con-
tained18, 964 class-word tokens in a trigram vocabulary, with a further3, 697 words modelled as unigram
extensions.

A hand transcription (provided by NIST) and four speech recognizer outputs (three distributed by
NIST representing the range of systems that participated inthe 1998 broadcast news transcription evalu-
ation, and our own system (Robinson, Cook, Ellis, Fosler-Lussier, Renals, & Williams )) were automati-
cally marked with NEs, then scored against the human-generated reference transcription. The results are
summarized in table 1. The combinedP&Rscore was about 83% for a hand transcription. For recognizer
outputs, the scores declined asWERincreased. As noted by other researchers (e.g., Miller, Schwartz,
Weischedel, & Stone (1999)) a linear relationship between theWERand the NE identification scores is
observed.

We have previously made an error analysis of this approach (Gotoh and Renals 1999), where it was
observed that most correctly marked names were identified through bigram or trigram constraints around
each name (i.e., the name itself and words before/after thatname). When the NE model was forced to
back-off to unigram statistics, names were often missed (causing a decrease in recall) or occasionally
a bigram of words attributed with another class was preferred (a decrease in precision). For example
consider the phrase

... DIRECTOR ADRIAN LAJOUS SAYS ...,

taken from the 1997 evaluation data, whereLAJOUS was not found in the vocabulary. The maximum
likelihood decoding for this phrase was:

5



WER SER R P P&R

hand transcription (NIST) .000 .286 .799 .865 .831
recognizer output (NIST 1) .135 .394 .738 .797 .766

(NIST 2) .145 .399 .741 .791 .765
(NIST 3) .283 .563 .618 .713 .662

recognizer output (own) .210 .452 .700 .769 .733

Table 1: NE identification scores on 1998Hub–4E evaluation data, using the NE model with implicit
class transitions. A hand transcription and three recognizer outputs were provided by NIST. The bottom
row is by our own recognizer.WERandSERindicate word and slot error rates.R, P, andP&R denote
recall, precision, and a combined precision&recall scores, respectively. This table contains further im-
provement since our participation in the 1998Hub–4Eevaluation. In this experiment, we used transcripts
of Broadcast News acoustic training data (1996–97) for NE model generation, but did not rely on external
sources.

... <other,DIRECTOR> <other,unknown> <other,unknown> <other,SAYS> ...

Unigram statistics for<person,ADRIAN> and<person,unknown> existed in the model, however none of
the trigrams or bigrams outperformed a bigram entry

p(<other,SAYS> | <other,unknown>) .

Further,<other,unknown> had higher unigram probability than<person,ADRIAN>, and no other trigram
or bigram was able to recover this name. (There was no unigramentry for <other,ADRIAN>.) As a
consequence,ADRIAN LAJOUS was not identified as<person>.

This is an example of a data sparsity problem that is observedin almost every aspect of spoken
language processing. Although NE models cannot accommodate probability parameters for a complete set
of n-gram occurrences, a successful recovery of name expressions is heavily dependent on the existence
of higher ordern-grams in the model. The implicit class transition approachcontributes adversely to the
data sparsity problem because it causes the set of possible tokens to increase in size from|V| to |C × V|.

5 Explicit Modelling of Class and Word Transitions

In this section, an alternative formulation is presented that explicitly models constraints at the class level,
compensating for the fundamental sparseness ofn-gram tokens on a vocabulary set. Recent work by
Miller et al. (1999) and Palmer, Burger, & Ostendorf (1999) has indicated that such explicit modelling is
a promising direction asP&R scores of up to 90% for hand transcribed data have been achieved using
an ergodic HMM. These formulations may be regarded as a two-level architecture, in which the state
transitions in the HMM represent transitions between classes (upper level), and the output distributions
from each state correspond to the sequence of words within each class (lower level).

The formulation developed here is simpler because, rather than introducing a two-level architecture,
we describe a flat state machine that models the probabilities of the current word and class conditioned
on the previous word and class (the right model of figure 1). Wedo not describe this formulation as an
HMM, as the probabilities are conditioned both on the previous word and on the previous class. Only a
bigram model is considered; however it outperforms the trigram modelling of§4.

5.1 Technical Description

Formulation (2) treats class and word tokens independently. Using bigram level constraints, (2) is reduced
to

p(c1, w1, · · · , cm, wm) =
∏

i=1···m

p(ci, wi|ci−1, wi−1) . (5)

6



The right side of (5) may be decomposed as

p(ci, wi|ci−1, wi−1) = p(wi|ci, ci−1, wi−1) · p(ci|ci−1, wi−1) . (6)

The conditioned current word probabilityp(wi|ci, ci−1, wi−1) and the current class probabilityp(ci|ci−1, wi−1)
are in the same form as a conventionaln-gram, hence may be estimated from annotated text data.

The amount of annotated text data available is orders of magnitude smaller than the amount of text data
typically used to estimaten-gram language models for large vocabulary speech recognition. Smoothing
the maximum likelihood probability estimates is thereforeessential to avoid zero probabilities for events
that were not observed in the training data. We have applied standard techniques in which more specific
models are smoothed with progressively less specific models. The following smoothing path was chosen
for the first term on the right side of (6):

p(wi|ci, ci−1, wi−1) −→ p(wi|ci, ci−1) −→ p(wi|ci) −→ p(wi) −→
1

|W|
,

where|W| is the size of the possible vocabulary that includes both observed and unobserved words from
the training text data (i.e.,|W| is sufficiently greater than|V|). We preferred smoothing top(wi|ci, ci−1),
rather than top(wi|ci, wi−1), since we believed that the former would be better estimatedfrom the anno-
tated training data.

Similarly, the smoothing path for the current class probability (the final term in (6)) was:

p(ci|ci−1, wi−1) −→ p(ci|ci−1) −→ p(ci) .

This assumes that each class occurs sufficiently in trainingtext data; otherwise, further smoothing to some
constant probability may be required.

Given the smoothing path, the current word probability may be computed using an interpolation
method based on that of Jelinek & Mercer (1980):

p(wi|ci, ci−1, wi−1) = f̂(wi|ci, ci−1, wi−1)

+ {1 − α(ci, ci−1, wi−1)} · p(wi|ci, ci−1) (7)

wheref̂(wi|ci, ci−1, wi−1) is a discounted relative frequency andα(ci, ci−1, wi−1) is a non-zero proba-
bility estimate (i.e., the probability that̂f(wi|ci, ci−1, wi−1) exists in the model).

Alternatively, the back-off smoothing method of Katz (1987) could be applied:

p(wi|ci, ci−1, wi−1) =

{

f̂(wi|ci, ci−1, wi−1) if E(ci, wi|ci−1, wi−1) exists,
β(ci, ci−1, wi−1) · p(wi|ci, ci−1) otherwise.

(8)

In (8),β(ci, ci−1, wi−1) is a back-off factor and is calculated by

β(ci, ci−1, wi−1) =
1 − α(ci, ci−1, wi−1)

1 −
∑

wi∈E(ci,wi|ci−1,wi−1)

f̂(wi|ci, ci−1)
(9)

whereE(ci, wi|ci−1, wi−1) implies the event such that current classci and wordwi occur after previous
classci−1 and wordwi−1.3 Discounted relative frequencies and non-zero probabilityestimates may be
obtained from training data using standard discounting techniques such as Good-Turing, absolute dis-
counting, or deleted interpolation. Further discussion for discounting and smoothing approaches should
be referred to, e.g., Katz (1987) or Ney, Essen, & Kneser (1995).

Given a sequence of wordsw1, · · · , wm, named entities can be identified by searching the Viterbi path
such that

<ĉ1 · · · ĉm> = argmax
c1···cm

p(c1, w1, · · · , cm, wm) . (10)

3 The weaker models —p(wi|ci, ci−1), p(wi|ci), and p(wi) — may be obtained in a way analogous to that used for
p(wi|ci, ci−1, wi−1). The smoothing approach is similar for the conditioned current class probabilities, i.e.,p(ci|ci−1, wi−1),
p(ci|ci−1), andp(ci).
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Figure 2: NE identification scores (P&R) on 1997Hub–4Ehand transcription — calculated using interpo-
lation and back-off smoothing. NE models were built with andwithout theunknown token, using deleted
interpolation (del), Good-Turing (GT), absolute (abs), and a combination of Good-Turing/absolute (GT-
abs) discounting schemes. We have used 1997 data for a system development (as in figure 2), then applied
to 1998 data for a system evaluation (as in table 2).

Although the smoothing scheme should handle novel words well, the introduction of conditional probabil-
ities forunknown (which represents those words not included in the vocabulary V) may be used to model
unknown words directly. In practice, this is achieved by setting a certain cutoff threshold when estimating
discounting probabilities. Those words that occur less than this threshold are treated asunknown tokens.
This does not imply that smoothing is no longer needed, but that conditional probabilities containing the
unknown token may occasionally pick up the context correctly without smoothing with weaker models.
The drawback is that some uncommon words are lost from the vocabulary. Below we compare two NE
models experimentally: one withunknown and fewer vocabulary words and the other withoutunknown
but with more vocabulary words.

5.2 Experiment

Experiments were performed using the evaluation conditions described in§3. Two NE models (with
explicit class transitions) were derived from transcriptsof the hand annotated Broadcast News acoustic
training data. One model contained nounknown token; there existed 27,280 different words in the training
data, all of which were accommodated in the vocabulary list.Another model selected 17,560 words (from
those occurring more than once in the training data) as a vocabulary and the rest (those occurring exactly
once — nearly 10,000 words) were replaced by theunknown token.

Firstly, NE models were discounted using the deleted interpolation, absolute, Good-Turing and com-
bined Good-Turing/absolute discounting schemes.4 For each discounting scheme and with/without an
unknown token, figure 2 showsP&R scores using the hand transcription of the 1997 evaluation data. For
most cases,P&Rwas slightly better whenunknown was introduced, although the vocabulary size was sub-
stantially smaller. Among discounting schemes, there was hardly any difference between Good-Turing,
absolute, and combined Good-Turing/absolute, regardlessof the smoothing method used. Non-zero prob-
ability parameters derived using deleted interpolation did not seem well matched to back-off smoothing.

4 The Good-Turing discounting formula is applied only when the inequalityrnr ≤ (r + 1)nr+1 is satisfied, wherer is a
sample count andnr implies the number of samples that occurred exactlyr times. Empirically, and for most cases, this inequality
holds only whenr is small. This may be modified slightly by applying absolute discounting to samples with higherr, which cannot
be discounted using the Good-Turing formula (i.e., combined Good-Turing/absolute discounting).
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WER SER R P P&R

hand transcription (NIST) .000 .187 .863 .922 .892
recognizer output (NIST 1) .135 .305 .775 .860 .815

(NIST 2) .145 .296 .779 .867 .821
(NIST 3) .283 .469 .655 .783 .713

recognizer output (own) .210 .381 .729 .823 .773

Table 2: NE identification scores on 1998Hub–4E evaluation data, using the NE model with explicit
class transitions. A hand transcription and three recognizer outputs were provided by NIST. The bottom
row is by our own recognizer.WERandSERindicate word and slot error rates.R, P, andP&R denote
recall, precision, and a combined precision&recall scores, respectively. The NE model contained 17,560
vocabulary words plusunknown token. A combination of Good-Turing/absolute discountingscheme was
applied, followed by back-off smoothing. The best performing model in the 1998Hub–4E IE–NE(Miller
et al. 1999) hadP&Rscores of .906, .815, .826, and .703 for the hand transcription and NIST recognizer
outputs 1, 2, 3.

We suspect, however, that the difference in performance would be negligible if a sufficient amount of
training data was available for the deleted interpolation case.

Using unknown and the combined Good-Turing/absolute discounting scheme, followed by back-off
smoothing, table 2 summarizes NE identification scores for 1998Hub–4Eevaluation data. For the hand
transcription and the four speech recognition outputs, this explicit class transition NE model improved
P&Rscores by 4–6% absolute over the implicit model of§4.

Although more complex in formulation, it is beneficial to model class-class transitions explicitly. Con-
sider again the phrase... DIRECTOR ADRIAN LAJOUS SAYS ... discussed in§4. Here,ADRIAN LAJOUS was
correctly identified as<person> althoughLAJOUS was not included in the vocabulary. It was identified
using the product of conditional probabilities

p(unknown | <+>, <person>) · p(<+> | <person>, ADRIAN)

betweenADRIAN andunknown as well as the product

p(SAYS | <other>, <person>, unknown) · p(<other> | <person>, unknown)

betweenunknown andSAYS.

5.3 An Alternative Decomposition

There exists an alternative approach to decomposing the right side of Equation (5):

p(ci, wi|ci−1, wi−1) = p(ci|wi, ci−1, wi−1) · p(wi|ci−1, wi−1) . (11)

Theoretically, if the “true” conditional probability can be estimated, decompositions by (6) and by (11)
should produce identical results. This ideal case does not occur, and various discounting and smoothing
techniques will cause further differences between two decompositions.

In practice, the conditional probabilities on the right side of (11) can be estimated in the same fashion
as described in§4: counting the occurrences of each token in annotated text data, then applying certain
discounting and smoothing techniques. The adopted smoothing path for the current word probability was

p(wi|ci−1, wi−1) −→ p(wi|ci−1) −→ p(wi) −→
1

|W|

and a path for the current class probability was

p(ci|wi, ci−1) −→ p(ci|wi) −→ p(ci) .

9
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Figure 3: P&R scores on the 1997 hand transcription using mixtures of the two decompositions. NE
models were built usingunknown combined Good-Turing/absolute discounting, then back-off smoothing.

In the latter case, a slight approximationp(ci|wi, ci−1, wi−1) ∼ p(ci|wi, ci−1) was made, since it was
observed thatwi−1 did not contribute much when calculating the probability ofci in this manner.

This second decomposition alone did not work as well as the initial decomposition. When applied to
the 1997 hand transcription, theP&R score declined by 8% absolute (usingunknown, combined Good-
Turing/absolute discounting, and back-off smoothing). Ingeneral, decomposition by (11) accurately
tagged words that occurred frequently in the training data,but performed less well for uncommon words.
Crudely speaking, it calculated the distribution over classes for each word; consequently it had reduced
accuracy for uncommon words with less reliable probabilityestimates. Decomposition by (6) makes a
more balanced decision because it relies on the distribution over words for each class, and there are orders
of magnitude fewer classes than words.

The two decompositions can be combined by

p(ci, wi|ci−1, wi−1) = p1(ci, wi|ci−1, wi−1)
1−k · p2(ci, wi|ci−1, wi−1)

k (12)

wherep1 refers to the initial method andp2 the alternative. Figure 3 shows precision and recall scoresfor
the mixture (with factors0.0 ≤ k ≤ 1.0) of the two decompositions. It is observed that, for values of k

around0.5, this modelling improved the precision without degrading the overallP&R.

6 Discussion

We have described trainable statistical models for the identification of named entities in television and
radio news broadcasts. Two models were presented, both based onn-gram statistics. The first model —
in which class information was implicitly modelled as a wordattribute — was a straightforward extension
of conventional language modelling. However, it suffered seriously from the problem of data sparsity,
resulting in a sub-optimal performance (aP&R score of 83% on a hand transcription). We addressed
this problem in a second approach which explicitly modelledclass-class and word-word transitions. With
this approach theP&R score improved to 89%. These scores were based on a relatively small amount
of training data (one million words). Like other language modelling problems, a simple way to improve
the performance is to increase the amount of training data. Miller et al. (1999) have noted that there
is a log-linear relation between the amount of training dataand the NE identification performance; our
experiments indicate that theP&Rscore improves by a few percent for each doubling of the training data
size (between 0.1 and 1.0 million words).
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The development of the second model was motivated by the success of the approach of Bikel et al.
(1999) and Miller et al. (1999). This model shares the same principle of an explicit, statistical model
of class-class and word-word transitions, but the model formulation, and the discounting and smooth-
ing procedures differ. In particular, the model presented here is a flat state machine, that is not readily
interpretable as a two-level HMM architecture. Our experience indicates that an appropriate choice and
implementation of discounting/smoothing strategies is very important, since a more complex model struc-
ture is being trained with less data, compared with conventional language models for speech recognition
systems. The overall results that we have obtained are similar to those of Miller et al., but there are some
differences which we cannot immediately explain away. In particular, although the combinedP&Rscores
were similar, Miller et al. reported balanced recall and precision, whereas we have consistently observed
substantially higher precision and lower recall.

The models presented here were trained using a corpus of about one million words of text, manually
annotated. No gazetteers, carefully-tuned lexica or domain-specific rules were employed; the brittleness
of maximum likelihood estimation procedures when faced with sparse training data was alleviated by
automatic smoothing procedures. Although the fact that an accurate NE model can be estimated from
sparse training data is of considerable interest and import, it is clear that it would be of use to be able to
incorporate much more information in a statistical NE identifier. To this end, we are investigating two
basic approaches: the incorporation of prior information;and unsupervised learning.

The most developed uses of prior information for NE identification are in the form of the rule-based
systems developed for the task. Some initial work, carried out with Rob Gaizauskas and Mark Stevenson
using a development of the system described by Wakao et al. (1996), has analysed the errors of rule-based
and statistical approaches. This has indicated that there is a significant difference between the annotations
produced by the two systems for the three classes of proper name. This leads us to believe that there
is some scope for either merging the outputs of the two systems, or incorporating some aspects of the
rule-based systems as prior knowledge in the statistical system.

Unsupervised learning of statistical NE models is attractive, since manual NE annotation of tran-
scriptions is a labour intensive process. However, our preliminary experiments indicate that unsupervised
training of NE models is not straightforward. Using a model built from 0.1 million words of manually
annotated text, the rest of the training data was automatically annotated, and the process iterated.P&R
scores stayed at the same level (around 73%) regardless of iteration.

Finally, we note that the NE annotation models discussed here — and all other state-of-the-art ap-
proaches — act as a post-processor to a speech recognizer. Hence the strong correlation between the
P&R scores of the NE tagger and theWERof the underlying speech recognizer is to be expected. The
development of NE models that incorporate acoustic information such as prosody (Hakkani Tür, Tür,
Stolcke, & Shriberg 1999) and confidence measures (Palmer, Ostendorf, & Burger 1999) are future direc-
tions of interest.
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