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Abstract

This paper discusses the development of trainable statistiodels for extracting content from
television and radio news broadcasts. In particular we eoimate on statistical finite state models for
identifying proper names and otheamed entitietn broadcast speech. Two models are presented: the
first represents name class information as a word attriltlwesecond represents both word-word and
class-class transitions explicitly. A commanrgram based formulation is used for both models. The
task of named entity identification is characterized bythedty sparse training data and issues related
to smoothing are discussed. Experiments are reported trsrigARPA/NISTHub—4E evaluation for
North American Broadcast News.
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1 Introduction

Simple statistical models underlie many successful apfitins of speech and language processing. The
most accurate document retrieval systems are based oraomggatistics. The acoustic model of virtually
all speech recognition systems is based on stochastic $isite machines referred to as hidden Markov
models (HMMs). The language (word sequence) model of sthtbe-art large vocabulary speech recog-
nition systems uses arrgram model [ — 1]th order Markov model), where s typically 4 or less. Two
important features of these simple models are their trdlibabnd scalability: in the case of language
modelling, model parameters are frequently estimated fromora containing up t60° words. These
approaches have been extensively investigated and optirfiz speech recognition, in particular, result-
ing in systems that can perform certain tasks (e.g., largatwalary dictation from a cooperative speaker)
with a high degree of accuracy. More recently, similar staial finite state models have been devel-
oped for spoken language processing applications beyoactdianscription to enable, for example, the
production of structured transcriptions which may inclpd@ctuation or content annotation.

In this paper we discuss the development of trainable Statisnodels for extracting content from
television and radio news broadcasts. In particular, weenttate omamed entitfNE) identification,
a task which is reviewed iff}. Sectio]3 outlines a general statistical framework foritiéhtification,
based on am-gram model over words and classes. We discuss two forroaktf this basic approach.
The first @E) represents class information as a word attribute; themie@E) explicitly represents word-
word and class-class transitions. In both cases we dishadsiplementation of the model and present
results using an evaluation framework based on North Araariroadcast news data. Finally,§ﬁ, we
discuss our work in the context of other approaches to NEtifilgation in spoken language and outline
some areas for future work.
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2 Named Entity Identification

2.1 Review

Proper names account for around 9% of broadcast news oatplitheir successful identification would
be useful for structuring the output of a speech recognieo@gh punctuation, capitalization and tok-
enization), and as an aid to other spoken language progassks, such as summarization and database
creation. The task of NE identification involves identifgiand classifying those words or word sequences
that may be classified as proper names, or as certain otteseslauch as monetary expressions, dates
and times. This is not a straightforward problem. WiWednesday 1 September is clearly a date,
andAlan Turing is a personal name, other strings, suctthesday after tomorrow, South Yorkshire
Beekeepers Association andNobel Prize are more ambiguous.

NE identification was formalized for evaluation purposepag of the 5th Message Understanding
Conference[(MUC-5 1993), and the evaluation task definitias evolved since then. In this paper we
follow the task definition specified for the recent broadcests evaluation (referred to &tub—4E I1E—
NE) sponsored by DARPA and NIST (Chinchor, Robinson, & Brow®§p This specification defined
seven classes of named entity: three types of proper narmeton>, <person> and<organization>) two
types of temporal expressioa fate> and<time>) and two types of numerical expressiatnfoney> and
<percentage>). According to this definition the following NE tags would berrect:

<date>Wednesday 1 September</date>

<person>Alan Turing</person>

the day after tomorrow

<organization>South Yorkshire Beekeepers Association</organization>
Nobel Prize

The day after tomorrow is not tagged as a date, since only “absolute” time or dateesspns are
recognizedNobel is not tagged as a personal name, since it is part of a largstrewt that refers to the
prize. Similarly,South Yorkshire is not tagged as a location since it is part of a larger coostagged
as an organization.

Both rule-based and statistical approaches have been aishi fidentification. Wakao, Gaizauskas,
& Wilks (1996) and Hobbs, Appelt, Bear, Israel, Kameyamigkel, & Tyson (199[7) adopted grammar-
based approaches using specially constructed grammaettegxs of personal and company names, and
higher level approaches such as name co-reference. Somengrabased systems have utilized a train-
able component, such as the Alembic system (Aberdeen, BuPgg, Hirschman, Robinson, & Vilain
1995). The LTG systen| (Mikheev, Grover, & Moens 1998) emptbprobabilistic partial matching, in
addition to a non-probabilistic grammar and gazetteerHopk

Bikel, Miller, Schwartz, & Weischedel (1997) introduced argly trainable system for NE identifi-
cation, which is discussed in greater detall in Bikel, Schaya Weischedel (1999). This approach was
based on an ergodic HMM (i.e., an HMM in which every state echable from every state) where the
hidden states corresponded to NE classes, and the obsgméadls corresponded to words. Training
was performed using an NE annotated corpus, so the staterssgwas known at training time. Thus
likelihood maximization could be accomplished directhtiwaiut need for the expectation-maximization
(EM) algorithm. The transition probabilities of this modetre conditioned on both the previous state and
the previous word, and the emission probabilities attatbegch state could be regarded as a word-level
bigram for the corresponding NE class.

NE identification systems are evaluated using an unseeri eedloation data: the hypothesised NEs
are compared with those annotated in a human—generatedme&etranscriptioﬂ.In this situation there
are two possible types of errdype where an item is tagged as the wrong kind of entity exténf where
the wrong number of word tokens are tagged. For example,

<location>South Yorkshire</location> Beekeepers Association

has errors of both type and extent since the ground trutthfseixcerpt is

1 Inter-annotator agreement for reference transcriptisegdund 97-98% (Robinson, Brown, Burger, Chinchor, Ddugfero,
& Hirschman 1999).




<organization>South Yorkshire Beekeepers Association</organization> .

These two error types each contrib0té to the overall error count, and precisid?) @nd recall R) can
be calculated in the usual way. A weighted harmonic m&&R), sometimes called the F-measure (van
Rijsbergen 1979), is often calculated as a single summatigtit:

In a recent evaluation, using newswire text, the best perifig system|(Mikheev et al. 1998) returned
a P&R of 0.93. Although precision and recall are clearly inforiv&tmeasures, Makhoul, Kubala,
Schwartz, & Weischedel (1999) have criticized the us®&R, since it implicitly deweights missing

and spurious identification errors compared with incori@entification errors. They proposed an alter-
native measure, referred to as the slot error r&t€H, that weights three types of identification error

equallyf]

2.2 ldentifying Named Entities in Speech

A straightforward approach to identifying named entitiespeech is to transcribe the speech automat-
ically using a recognizer, then to apply a text-based NEtifleation method to the transcription. It is
more difficult to identify NEs from automatically transceith speech compared with text, since speech
recognition output is missing features that may be expddite“hard-wired” grammar rules or by attach-
ment to vocabulary items, such as punctuation, capitédizand numeric characters.

More importantly, no speech recognizer is perfect, and spd&nguage is rather different from writ-
ten language. Although planned, low-noise speech (suchcteidn, or a news bulletin read from a
script) can be recognized with a word error ratéR of less than 10%, speech which is conversational,
in a noisy (or otherwise cluttered) acoustic environmenfrem a different domain may suffer WER
in excess of 40%. Additionally, the natural unit seems toh®eghrase, rather than the sentence, and
phenomena such as disfluencies, corrections and repstai@ncommon. It could thus be argued that
statistical approaches, that typically operate with lgditontext and very little notion of grammatical
constructs, are more robust than grammar-based approgshpslt & Martin (1999) oppose this argu-
ment, and have developed a finite-state grammar-basedaatpia@ NE identification of broadcast news.
However, this relied on large, carefully constructed lexand gazetteers, and it is not clear how portable
between domains this approach is. Some further discus$imesbased approaches foIIows@.

Spoken NE identification was first demonstrated by Kubalay&etz, Stone, & Weischedel (1998),
who applied the model af Bikel et al. (1999) to the output ofradulcast news speech recognizer. An
important conclusion of that work — supported by the experits reported here — was that the error of
an NE identifier degraded linearly witNER with the largest errors due to missing and spuriously tdgge
names. Since then several other researchers, includisgloas, have investigated the problem within
the Hub—4Eevaluation framework.

Evaluation of spoken NE identification is more complicatealt for text, since there will be speech
recognition errors as well as NE identification errors (itke reference tags will not apply to the same
word sequence as the hypothesised tags). This requiresidevet alignment of the two word sequences,
which may be achieved using a phonetic alignment algoritiewebbped for the evaluation of speech
recognizers|(Fisher & Fiscus 1993). Once an alignment igiogd, the evaluation procedure outlined
above may be employed, with the addition of a third error pyqomtent caused by speech recognition
errors. The same statistid®& RandSER can still be used, with the three error types contributiqgadly
to the error count.

2 SERis analogous to word error rat®/ER), a performance measure for automatic speech transeripliois obtained by
SER= I+ M+ S)/(C + I+ M) whereC, I, M, andS denote the numbers of correct, incorrect, missing, andieypsir
identifications. Using this notation, precision and resatires may be calculated Bs= C/(C+I+ M) andP = C/(C+1+5),
respectively.
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Figure 1: Topologies for NE models. The left model assumasdlass information is a word attribute.
The right model explicitly models word-word and class-sl&ansitions.

3 Statistical Framework

First, letV denote a vocabulary and be a set of name classes. We consider ¥as similar to a
vocabulary for conventional speech recognition systeres, tiypically containing tens of thousands of
words, and no case information or other characteristicsjvHat follows,C contains the proper names,
temporal and number expressions used inrHbb—4E |E—NEevaluation described above. When there is
no ambiguity, these named entities are referred to as “rginefs a convention here, a classther>

is included inC for those words not belonging to any of the specified namesal® each name may
consist of one word or a sequence of words, we also includer&ema+> in C, implying that the
corresponding word is a part of the same name as the previorts Whe following example is taken
from a human-generated reference transcription for th& Hith—4EBroadcast News evaluation data:

AT THE RONALD REAGAN CENTER IN SIMI VALLEY CALIFORNIA

<organization> <location> <location>

The corresponding class sequence is
<other> <+> <organization> <+> <+> <other> <location> <+> <location>

becausesiMI VALLEY andCALIFORNIA are considered two different names by the specificationn@tuar
et al. 1998).

Class information may be interpreted as a word attribute igft model of figureﬂl). Formally, we
define a class-word tokenc, w> € C x V and consider a probability

p(<ew>y, - <cw>,) = [ pl<e,ws;|<cw>,, - <c,w>, ) (1)
1=1--m
that generates a sequence of class-word tokens >, ---, <c,w>,,. Alternatively, word-word and

class-class transitions may be explicitly formulated (tight model of figure[ll). Then we consider a
probability

p(cl,wl,"'7cm7wm): H p(civwi|clvw17"'7Ci713wi71) (2)

that generates a sequences of wards- - -, w,,, and a corresponding sequence of classes: -, ¢,,.
The first approach is simple and analogous to conventiorgaiam language modelling, however the
performance is sub-optimal in comparison to the secondogbr, which is more complex and needs
greater attention to the smoothing procedure.

For both formulations, we have performed experiments udatg produced for thelub—4E IE-NE
evaluation. The training data for this evaluation consisttmanually annotated transcripts of tHeb—
4E Broadcast News acoustic training data (broadcast in 1996F8is data contained approximately one
million words (corresponding to about 140 hours of audicdv&opment was performed using the 1997
evaluation data (3 hours of audio broadcast in 1996, abq@082vords) and evaluation results reported
on the 1998 evaluation data (3 hours of audio broadcast i6 486 1998, about 33,000 words).



4 Modelling Class Information as a Word Attribute

In this section, we describe an NE model based on direct wwand} transitions, with class information
treated as a word attribute. This approach suffers seyidrgsh data sparsity. We briefly summarize why
this is so.

4.1 Technical Description

Formulation Kll) may be best viewed as a straightforwardnsibm to standard-gram language mod-
elling. Denotinge = <c, w>, (ﬂ) is rewritten as

pler, - em) =[] pleler,-- ein) ®)

and this is identical to the-gram model widely used for large vocabulary speech ret¢mgnsystems.
Because each tokene C x V is treated independently, those having the same word bulitfezent
class (e.g.<date,MAY >, <person,MAY>, and<other,MAY>) are considered different members. Using this
formulation, class-class transitions are implicit. Fertfit may be interpreted as a classical HMM, in
which tokense; correspond to states, with observatiensandw; generated from eacty. Maximum
likelihood estimates for model parameters can be obtairau the frequency count of eashrgram
given text data annotated with name information. Sincettite sequence is known the forward-backward
algorithm is not required. Standard discounting and sningttechniques may be applied.

The search process is basedmegram relations. Given a sequence of words, - - - , w,,, the most
probable sequence of names may be identified by tracing ttleebVipath across the class-word trellis
such that

<élv"'7ém> = argmaxp(<c,w>1,~-~,<c,w>m) . (4)

C1"Cm

This process may be slightly elaborated by looking into aasse list of names that augmemntgrams
of <c, w> tokens. Further technical details of this formulation arSiotoh & Renals (1999).

4.2 Experiment

Using the experimental setup describe@ﬁn we estimated a back-off trigram language model that con-
tained18, 964 class-word tokens in a trigram vocabulary, with a furthigt97 words modelled as unigram
extensions.

A hand transcription (provided by NIST) and four speech geizer outputs (three distributed by
NIST representing the range of systems that participatétteiri 998 broadcast news transcription evalu-
ation, and our own systerp (Robinson, Cook, Ellis, Foslesdier, Renals, & Williamp )) were automati-
cally marked with NEs, then scored against the human-gtatkraference transcription. The results are
summarized in tablﬂ 1. The combin& R score was about 83% for a hand transcription. For recognizer
outputs, the scores declined W&ERincreased. As noted by other researchers (e.g., Millerw8dia,
Weischedel, & Stone (1999)) a linear relationship betwéenYERand the NE identification scores is
observed.

We have previously made an error analysis of this apprdaoktofGand Renals 1999), where it was
observed that most correctly marked names were identifredigfh bigram or trigram constraints around
each name (i.e., the name itself and words before/aftemtaie). When the NE model was forced to
back-off to unigram statistics, names were often missedsijog a decrease in recall) or occasionally
a bigram of words attributed with another class was prefieeedecrease in precision). For example
consider the phrase

... DIRECTOR ADRIAN LAJOUS SAYS ...,

taken from the 1997 evaluation data, whersous was not found in the vocabulary. The maximum
likelihood decoding for this phrase was:



| | WER| SER| R | P [P&R]|
hand transcription (NIST) .000 | .286| .799 | .865 | .831
recognizer output (NIST 1) .135 | .394 | .738 | .797 | .766
(NIST2) | .145 | .399| .741| .791| .765

(NIST3) | .283 | .563| .618 | .713 | .662

recognizer output (own) .210 | .452| .700 | .769 | .733

Table 1: NE identification scores on 198fib—4E evaluation data, using the NE model with implicit
class transitions. A hand transcription and three recegmiatputs were provided by NIST. The bottom
row is by our own recognizeMVERand SERindicate word and slot error rateR, P, andP&R denote
recall, precision, and a combined precision&recall scorespectively. This table contains further im-
provement since our participation in the 1998b—4Eevaluation. In this experiment, we used transcripts
of Broadcast News acoustic training data (1996—97) for NEehgeneration, but did not rely on external
sources.

... <other,DIRECTOR> < other,unknown> <other,unknown> <other,SAYS> ...

Unigram statistics fokperson,ADRIAN> and <person,unknown> existed in the model, however none of
the trigrams or bigrams outperformed a bigram entry

p(<other,SAYS> | <other,unknown>) .

Further, <other,unknown> had higher unigram probability thafiperson,ADRIAN>, and no other trigram
or bigram was able to recover this name. (There was no unigmny for <other, ADRIAN>.) AsS a
consequenceDRIAN LAJOUS was not identified as person>.

This is an example of a data sparsity problem that is obseirvedmost every aspect of spoken
language processing. Although NE models cannot accommedabability parameters for a complete set
of n-gram occurrences, a successful recovery of name expnassitieavily dependent on the existence
of higher ordem-grams in the model. The implicit class transition approaattributes adversely to the
data sparsity problem because it causes the set of possilelestto increase in size fropi| to |C x V|.

5 Explicit Modelling of Class and Word Transitions

In this section, an alternative formulation is presented &xplicitly models constraints at the class level,
compensating for the fundamental sparseness-gfam tokens on a vocabulary set. Recent work by
Miller et al. (1999) and Palmer, Burger, & Ostendorf (19983 indicated that such explicit modelling is
a promising direction a®& R scores of up to 90% for hand transcribed data have been achising
an ergodic HMM. These formulations may be regarded as a éwel-larchitecture, in which the state
transitions in the HMM represent transitions between elagspper level), and the output distributions
from each state correspond to the sequence of words witbim@ass (lower level).

The formulation developed here is simpler because, ralitaer introducing a two-level architecture,
we describe a flat state machine that models the probasitifithe current word and class conditioned
on the previous word and class (the right model of figﬂlre 1).dévamot describe this formulation as an
HMM, as the probabilities are conditioned both on the presiword and on the previous class. Only a
bigram model is considered; however it outperforms thearigmodelling ofg“E.

5.1 Technical Description

Formulation KIZ) treats class and word tokens independdugliyng bigram level constraintsﬂ (2)isreduced
to

p(clawla"'vcmvwm) = H p(civwi|c’iflawifl) . (5)

1=1--m



The right side ofﬂS) may be decomposed as
p(ei, wilci—1, wi—1) = p(wi|c;, ei—1, wi—1) - p(eilci—1, wi—1) . (6)

The conditioned currentword probabilipyw;|c;, ¢;—1,w;—1) and the current class probabiljiyc; |c; 1, w;—1)
are in the same form as a conventionajram, hence may be estimated from annotated text data.

The amount of annotated text data available is orders of inatgsmaller than the amount of text data
typically used to estimate-gram language models for large vocabulary speech recognBmoothing
the maximum likelihood probability estimates is therefessential to avoid zero probabilities for events
that were not observed in the training data. We have apptadiard techniques in which more specific
models are smoothed with progressively less specific modiaks following smoothing path was chosen
for the first term on the right side (ﬁ(G):

p(wilei, cim1, wi—1) — p(wilci; cim1) — p(wile;) — p(wi) — W
where|W]| is the size of the possible vocabulary that includes botlestes! and unobserved words from
the training text data (i.e}|\V| is sufficiently greater thafV’|). We preferred smoothing f(w;|c;, ¢;—1),
rather than te(w;|c;, w;—1), since we believed that the former would be better estimiated the anno-
tated training data.

Similarly, the smoothing path for the current class proligt{the final term in ﬂi)) was:

p(Ci|Ci—1,wz‘—1) —>P(Cz‘|Cz‘—1) —’p(ci) .

This assumes that each class occurs sufficiently in trabextglata; otherwise, further smoothing to some
constant probability may be required.

Given the smoothing path, the current word probability maycomputed using an interpolation
method based on that pf Jelinek & Mercer (1j980):

p(wi|ciaci—1awi—l) = f(wi|ciaci—17wi—1)
+ {1 — alci, cim1,wim1) } - p(wilcs, ¢i—1) (7)
Wheref(wl-|ci, ci—1,w;—1) is a discounted relative frequency am(t;, ¢;—1,w;—1) iS @ non-zero proba-

bility estimate (i.e., the probability th@?t(wi|ci, ¢i—1,w;—1) exists in the model).
Alternatively, the back-off smoothing method|of Katz (198@uld be applied:

N N flwilei, cioi,wioy) if £(ci,wilci—1,w;—1) exists
p<wl|cu Ci-1, wl_l) - { ﬁ(cz-, Ci—1, wi_l) . p(wi|ci, Ci—l) otherwise (8)
In (E), B(ci, ci—1,w;—1) is a back-off factor and is calculated by

1— e, cim1,wiz1)

1-— Z fA(wi|Cl‘,Ci,1)

w; €€ (ciywilci—1,wi—1)

9)

5(01', Ci—1, wifl) =

whereé(c;, w;|c;—1,w;—1) implies the event such that current claseind wordw; occur after previous
classc;_1 and Wordwi,l.ﬁ Discounted relative frequencies and non-zero probalgktymates may be
obtained from training data using standard discountingrigpies such as Good-Turing, absolute dis-
counting, or deleted interpolation. Further discussiandiscounting and smoothing approaches should
be referred to, e.g|, Katz (1987) or Ney, Essen, & Kneser41L99

Given a sequence of words, - - - , w,,,, Nnamed entities can be identified by searching the Viterth pa
such that
<élém> :argmaxp(clvwla"'acmawm) . (10)
1ot

3 The weaker models —p(w;|ci, ci—1), p(w;lc;), and p(w;) — may be obtained in a way analogous to that used for
p(w;|es, ¢i—1,w;—1). The smoothing approach is similar for the conditioned entriclass probabilities, i.ep(c;|c;—1, wi—1),
p(cilei—1), andp(c;).
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Figure 2: NE identification scoreB& R) on 1997Hub—4Ehand transcription — calculated using interpo-
lation and back-off smoothing. NE models were built with avithout theunknown token, using deleted
interpolation @el), Good-Turing GT), absolute gbs), and a combination of Good-Turing/absolu@{
abs) discounting schemes. We have used 1997 data for a systestodment (as in figurE 2), then applied
to 1998 data for a system evaluation (as in tﬂole 2).

Although the smoothing scheme should handle novel wordis thelintroduction of conditional probabil-
ities forunknown (which represents those words not included in the vocapMamay be used to model
unknown words directly. In practice, this is achieved byisgta certain cutoff threshold when estimating
discounting probabilities. Those words that occur lesa thés threshold are treated asknown tokens.
This does not imply that smoothing is no longer needed, taitdbnditional probabilities containing the
unknown token may occasionally pick up the context correctly withemoothing with weaker models.
The drawback is that some uncommon words are lost from thabdary. Below we compare two NE
models experimentally: one witimknown and fewer vocabulary words and the other withonitnown
but with more vocabulary words.

5.2 Experiment

Experiments were performed using the evaluation conditibescribed ir@E. Two NE models (with
explicit class transitions) were derived from transcriptshe hand annotated Broadcast News acoustic
training data. One model containeduntknown token; there existed 27,280 different words in the training
data, all of which were accommodated in the vocabularyAiabther model selected 17,560 words (from
those occurring more than once in the training data) as abuagy and the rest (those occurring exactly
once — nearly 10,000 words) were replaced byuhieown token.

Firstly, NE models were discounted using the deleted imietipn, absolute, Good-Turing and com-
bined Good-Turing/absolute discounting scheﬁmﬁor each discounting scheme and with/without an
unknown token, figure|]2 showB& R scores using the hand transcription of the 1997 evaluatiea dror
most case$& Rwas slightly better wheanknown was introduced, although the vocabulary size was sub-
stantially smaller. Among discounting schemes, there veadl any difference between Good-Turing,
absolute, and combined Good-Turing/absolute, regardfdbe smoothing method used. Non-zero prob-
ability parameters derived using deleted interpolatiahrdit seem well matched to back-off smoothing.

4 The Good-Turing discounting formula is applied only whea thequalityrn, < (r + 1)n,11 is satisfied, where is a
sample count and,. implies the number of samples that occurred exactiynes. Empirically, and for most cases, this inequality
holds only whenr is small. This may be modified slightly by applying absoluigcdunting to samples with higher which cannot
be discounted using the Good-Turing formula (i.e., comti@®@od-Turing/absolute discounting).



| | WER| SER| R | P [P&R]|
hand transcription (NIST) .000 | .187 | .863 | .922 | .892
recognizer output (NIST 1) .135 | .305| .775| .860| .815
(NIST2) | .145 | .296| .779 | .867 | .821

(NIST3) | .283 | .469| .655| .783| .713

recognizer output (own) .210 | .381| .729 | .823| .773

Table 2: NE identification scores on 198#1b—4E evaluation data, using the NE model with explicit
class transitions. A hand transcription and three recegmiatputs were provided by NIST. The bottom
row is by our own recognizeMVERand SERindicate word and slot error rateR, P, andP&R denote
recall, precision, and a combined precision&recall scarespectively. The NE model contained 17,560
vocabulary words plusnknown token. A combination of Good-Turing/absolute discoungsogeme was
applied, followed by back-off smoothing. The best perforgrnodel in the 1998lub—4E IE-NEKMiller

et al. 1999) hadP& R scores of .906, .815, .826, and .703 for the hand transeniind NIST recognizer
outputs 1, 2, 3.

We suspect, however, that the difference in performancdduvoe negligible if a sufficient amount of
training data was available for the deleted interpolatiasec

Using unknown and the combined Good-Turing/absolute discounting schéstiewed by back-off
smoothing, tabl§]2 summarizes NE identification scores 898Hub—4Eevaluation data. For the hand
transcription and the four speech recognition outputs, éplicit class transition NE model improved
P& R scores by 4-6% absolute over the implicit mode§@.f

Although more complex in formulation, it is beneficial to nebdlass-class transitions explicitly. Con-
sider again the phrase DIRECTOR ADRIAN LAJOUS SAYS ... discussed ir‘@@,. Here,ADRIAN LAJOUS was
correctly identified as<person> althoughLAJous was not included in the vocabulary. It was identified
using the product of conditional probabilities

p(unknown | <+>, <person>) - p(<+> | <person>, ADRIAN)
betweembDRIAN andunknown as well as the product
P(SAYS | <other>, <person>, unknown) - p(<other> | <person>, unknown)

betweenunknown andsAys.

5.3 An Alternative Decomposition

There exists an alternative approach to decomposing thesige of EquatiorﬂS):
p(ci, wilei—1, wi—1) = plei|ws, ¢i—1,wi—1) - p(wilei—1,wi—1) . (11)

Theoretically, if the “true” conditional probability carekestimated, decompositions tﬂ/ (6) and @ (1)
should produce identical results. This ideal case doesewmtrpand various discounting and smoothing
techniques will cause further differences between two dgmsitions.

In practice, the conditional probabilities on the rightesaf ) can be estimated in the same fashion
as described il‘g’H: counting the occurrences of each token in annotated t#a&t then applying certain
discounting and smoothing techniques. The adopted smmpftath for the current word probability was

1
p(wilei—1,wi—1) — p(wilei—1) — p(w;) — W
and a path for the current class probability was

p(cilwi, ci—1) — p(eilwi) — p(e;) -
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Figure 3: P&R scores on the 1997 hand transcription using mixtures ofwleedecompositions. NE
models were built usingnknown combined Good-Turing/absolute discounting, then baékrabothing.

In the latter case, a slight approximatipfc;|w;, ¢;—1,w;—1) ~ p(c;|wi, c;—1) was made, since it was
observed thatv; 1 did not contribute much when calculating the probability:pin this manner.

This second decomposition alone did not work as well as titi@lidecomposition. When applied to
the 1997 hand transcription, tff& R score declined by 8% absolute (usimgknown, combined Good-
Turing/absolute discounting, and back-off smoothing). gmeral, decomposition bﬂll) accurately
tagged words that occurred frequently in the training dadaperformed less well for uyncommon words.
Crudely speaking, it calculated the distribution over stesfor each word; consequently it had reduced
accuracy for uncommon words with less reliable probabé#yimates. Decomposition b (6) makes a
more balanced decision because it relies on the distribotier words for each class, and there are orders
of magnitude fewer classes than words.

The two decompositions can be combined by

p(Ci,wi|Ci—1,wi—1) = pl(Cz‘,wi|Cz‘—1,wi—1)17k 'P2(Ci,wi|0i—1, wi—l)k (12)

wherep, refers to the initial method ang the alternative. FigurE 3 shows precision and recall sdores
the mixture (with factor9.0 < k < 1.0) of the two decompositions. It is observed that, for values o
around0.5, this modelling improved the precision without degrading tverallP&R.

6 Discussion

We have described trainable statistical models for thetifieation of named entities in television and
radio news broadcasts. Two models were presented, botd basegram statistics. The first model —
in which class information was implicitly modelled as a watttibute — was a straightforward extension
of conventional language modelling. However, it sufferedausly from the problem of data sparsity,
resulting in a sub-optimal performance P&R score of 83% on a hand transcription). We addressed
this problem in a second approach which explicitly modetlieds-class and word-word transitions. With
this approach th®&R score improved to 89%. These scores were based on a refadivalll amount
of training data (one million words). Like other languagedalling problems, a simple way to improve
the performance is to increase the amount of training datdlenvt al. (199P) have noted that there
is a log-linear relation between the amount of training datd the NE identification performance; our
experiments indicate that tiR& R score improves by a few percent for each doubling of theitrgidata
size (between 0.1 and 1.0 million words).
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The development of the second model was motivated by theessaf the approach of Bikel et al.
(1999) and Miller et al. (1999). This model shares the sanmeciple of an explicit, statistical model
of class-class and word-word transitions, but the modehtdation, and the discounting and smooth-
ing procedures differ. In particular, the model presenteths a flat state machine, that is not readily
interpretable as a two-level HMM architecture. Our expereindicates that an appropriate choice and
implementation of discounting/smoothing strategies iy irportant, since a more complex model struc-
ture is being trained with less data, compared with coneeatilanguage models for speech recognition
systems. The overall results that we have obtained aressitithose of Miller et gl., but there are some
differences which we cannotimmediately explain away. Iripalar, although the combind®& R scores
were similar[Miller et a). reported balanced recall anccjmien, whereas we have consistently observed
substantially higher precision and lower recall.

The models presented here were trained using a corpus of abeunillion words of text, manually
annotated. No gazetteers, carefully-tuned lexica or dorapécific rules were employed; the brittleness
of maximum likelihood estimation procedures when facecwiparse training data was alleviated by
automatic smoothing procedures. Although the fact thatcurate NE model can be estimated from
sparse training data is of considerable interest and imjpdstclear that it would be of use to be able to
incorporate much more information in a statistical NE idfeet To this end, we are investigating two
basic approaches: the incorporation of prior informatamg unsupervised learning.

The most developed uses of prior information for NE iderdiien are in the form of the rule-based
systems developed for the task. Some initial work, carrigdyith Rob Gaizauskas and Mark Stevenson
using a development of the system described by Wakao et386§1has analysed the errors of rule-based
and statistical approaches. This has indicated that teersignificant difference between the annotations
produced by the two systems for the three classes of propee.ndhis leads us to believe that there
is some scope for either merging the outputs of the two systemincorporating some aspects of the
rule-based systems as prior knowledge in the statisticibgy.

Unsupervised learning of statistical NE models is attvagtsince manual NE annotation of tran-
scriptions is a labour intensive process. However, ouiirpieary experiments indicate that unsupervised
training of NE models is not straightforward. Using a mode&ilttdfrom 0.1 million words of manually
annotated text, the rest of the training data was autoniigt@manotated, and the process iterat&& R
scores stayed at the same level (around 73%) regardlessatfdn.

Finally, we note that the NE annotation models discussed herand all other state-of-the-art ap-
proaches — act as a post-processor to a speech recognizece lthe strong correlation between the
P&R scores of the NE tagger and tii¢ERof the underlying speech recognizer is to be expected. The
development of NE models that incorporate acoustic inféionasuch as prosody (Hakkani Tar, Tar,
Stolcke, & Shriberg 1999) and confidence measures (Palnsegn@orf, & Burger 1999) are future direc-
tions of interest.
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